- Award ID(s):
- 1748056
- NSF-PAR ID:
- 10079405
- Date Published:
- Journal Name:
- Proceedings of the 11th International Conference on Natural Language Generation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Questions Under Discussion (QUD) is a versatile linguistic framework in which discourse progresses as continuously asking questions and answering them. Automatic parsing of a discourse to produce a QUD structure thus entails a complex question generation task: given a document and an answer sentence, generate a question that satisfies linguistic constraints of QUD and can be grounded in an anchor sentence in prior context. These questions are known to be curiosity-driven and open-ended. This work introduces the first framework for the automatic evaluation of QUD parsing, instantiating the theoretical constraints of QUD in a concrete protocol. We present QUDeval, a dataset of fine-grained evaluation of 2,190 QUD questions generated from both fine-tuned systems and LLMs. Using QUDeval, we show that satisfying all constraints of QUD is still challenging for modern LLMs, and that existing evaluation metrics poorly approximate parser quality. Encouragingly, human-authored QUDs are scored highly by our human evaluators, suggesting that there is headroom for further progress on language modeling to improve both QUD parsing and QUD evaluation.more » « less
-
Entity-Aware Dependency-Based Deep Graph Attention Network for Comparative Preference ClassificationThis paper studies the task of comparative preference classification (CPC). Given two entities in a sentence, our goal is to classify whether the first (or the second) entity is preferred over the other or no comparison is expressed at all between the two entities. Existing works either do not learn entity-aware representations well and fail to deal with sentences involving multiple entity pairs or use sequential modeling approaches that are unable to capture long-range dependencies between the entities. Some also use traditional machine learning approaches that do not generalize well. This paper proposes a novel Entity-aware Dependency-based Deep Graph Attention Network (ED-GAT) that employs a multi-hop graph attention over a dependency graph sentence representation to leverage both the semantic information from word embeddings and the syntactic information from the dependency graph to solve the problem. Empirical evaluation shows that the proposed model achieves the state-of-the-art performance in comparative preference classification.more » « less
-
null (Ed.)
Named entity recognition (NER) is a fundamental task in the natural language processing (NLP) area. Recently, representation learning methods (e.g., character embedding and word embedding) have achieved promising recognition results. However, existing models only consider partial features derived from words or characters while failing to integrate semantic and syntactic information (e.g., capitalization, inter-word relations, keywords, lexical phrases, etc.) from multi-level perspectives. Intuitively, multi-level features can be helpful when recognizing named entities from complex sentences. In this study, we propose a novel framework called attention-based multi-level feature fusion (AMFF), which is used to capture the multi-level features from different perspectives to improve NER. Our model consists of four components to respectively capture the local character-level, global character-level, local word-level, and global word-level features, which are then fed into a BiLSTM-CRF network for the final sequence labeling. Extensive experimental results on four benchmark datasets show that our proposed model outperforms a set of state-of-the-art baselines.
-
null (Ed.)Logical connectives and their implications on the meaning of a natural language sentence are a fundamental aspect of understanding. In this paper, we investigate whether visual question answering (VQA) systems trained to answer a question about an image, are able to answer the logical composition of multiple such questions. When put under this Lens of Logic, state-of-the-art VQA models have difficulty in correctly answering these logically composed questions. We construct an augmentation of the VQA dataset as a benchmark, with questions containing logical compositions and linguistic transformations (negation, disjunction, conjunction, and antonyms). We propose our Lens of Logic (LOL) model which uses question-attention and logic-attention to understand logical connectives in the question, and a novel Fréchet-Compatibility Loss, which ensures that the answers of the component questions and the composed question are consistent with the inferred logical operation. Our model shows substantial improvement in learning logical compositions while retaining performance on VQA. We suggest this work as a move towards robustness by embedding logical connectives in visual understanding.more » « less
-
Named geographic entities (geo-entities for short) are the building blocks of many geographic datasets. Characterizing geo-entities is integral to various application domains, such as geo-intelligence and map comprehension, while a key challenge is to capture the spatial-varying context of an entity. We hypothesize that we shall know the characteristics of a geo-entity by its surrounding entities, similar to knowing word meanings by their linguistic context. Accordingly, we propose a novel spatial language model, SpaBERT, which provides a general-purpose geo-entity representation based on neighboring entities in geospatial data. SpaBERT extends BERT to capture linearized spatial context, while incorporating a spatial coordinate embedding mechanism to preserve spatial relations of entities in the 2-dimensional space. SpaBERT is pretrained with masked language modeling and masked entity prediction tasks to learn spatial dependencies. We apply SpaBERT to two downstream tasks: geo-entity typing and geo-entity linking. Compared with the existing language models that do not use spatial context, SpaBERT shows significant performance improvement on both tasks. We also analyze the entity representation from SpaBERT in various settings and the effect of spatial coordinate embedding.more » « less