Herein we study the effect alloying Yb onto the octahedral cite of Te doped Mg 3 Sb 1.5 Bi 0.5 has on transport and the material's high temperature stability. We show that the reduction in mobility can be well explained with an alloy scattering argument due to disrupting the Mg octahedral –Mg tetrahedral interaction that is important for placing the conduction band minimum at a location with high valley degeneracy. We note this interaction likely dominates the conducting states across n-type Mg 3 Sb 2 –Mg 3 Bi 2 solid solutions and explains why alloying on the anion site with Bi isn't detrimental to Mg 3 Sb 2 's mobility. In addition to disrupting this Mg–Mg interaction, we find that alloying Yb into the Mg 3 Sb 2 structure reduces its n-type dopability, likely originating from a change in the octahedral site's vacancy formation energy. We conclude showing that while the material's figure of merit is reduced with the addition of Yb alloying, its high temperature stability is greatly improved. This study demonstrates a site-specific alloying effect that will be important in other complex thermoelectric semiconductors such as Zintl phases.
more »
« less
Improved stability and high thermoelectric performance through cation site doping in n-type La-doped Mg 3 Sb 1.5 Bi 0.5
n-Type conduction in a Mg 3 Sb 1.5 Bi 0.5 system is achieved with La-doping at cation sites with a peak zT > 1. La-doped samples exhibit much higher doping efficiency and dopability compared to other chalcogen-doped samples. This allows greater tunability of the electronic properties. La-doping also significantly improves the thermal stability of n-type Mg 3 Sb 1.5 Bi 0.5 measured via a long-term Hall carrier concentration measurement.
more »
« less
- PAR ID:
- 10079412
- Date Published:
- Journal Name:
- Journal of Materials Chemistry A
- Volume:
- 6
- Issue:
- 41
- ISSN:
- 2050-7488
- Page Range / eLocation ID:
- 19941 to 19946
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent, and somewhat surprising, successful n-type doping of Mg 3 Sb 2 was the key to realizing high thermoelectric performance in this material. Herein, we use first-principles defect calculations to investigate different extrinsic n-type doping strategies for Mg 3 Sb 2 and to reveal general chemical trends in terms of dopant solubilities and maximal achievable electron concentrations. In agreement with experiments, we find that Sb substitution is an effective doping strategy, with Se and Te doping predicted to yield up to ∼8 × 10 19 cm −3 electrons. However, we also find that Mg substitution with trivalent (or higher) cations can be even more effective; in particular, the predicted highest achievable electron concentration (∼5 × 10 20 cm −3 ) with La as an extrinsic dopant exceeds that of Se and Te doping. Interstitial doping (Li, Zn, Cu, Be) is found to be largely ineffective either due to self-compensation (Li) or high formation energy (Zn, Cu, Be). Our results offer La as an alternative dopant to Te and Se and reinforce the need for careful phase boundary mapping in achieving high electron concentrations in Mg 3 Sb 2 .more » « less
-
Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system.more » « less
-
null (Ed.)The Zintl phases, Yb 14 M Sb 11 ( M = Mn, Mg, Al, Zn), are now some of the highest thermoelectric efficiency p-type materials with stability above 873 K. Yb 14 MnSb 11 gained prominence as the first p-type thermoelectric material to double the efficiency of SiGe alloy, the heritage material in radioisotope thermoelectric generators used to power NASA’s deep space exploration. This study investigates the solid solution of Yb 14 Mg 1− x Al x Sb 11 (0 ≤ x ≤ 1), which enables a full mapping of the metal-to-semiconductor transition. Using a combined theoretical and experimental approach, we show that a second, high valley degeneracy ( N v = 8) band is responsible for the groundbreaking performance of Yb 14 M Sb 11 . This multiband understanding of the properties provides insight into other thermoelectric systems (La 3− x Te 4 , SnTe, Ag 9 AlSe 6 , and Eu 9 CdSb 9 ), and the model predicts that an increase in carrier concentration can lead to zT > 1.5 in Yb 14 M Sb 11 systems.more » « less
-
Reactions of carbon with a heavy main group metal (M = Sb, Bi, or Te) in an excess of lanthanum/nickel eutectic flux lead to formation of a family of carbide compounds La3MC2with a new structure type. The monoclinic structure features C24−anions octahedrally coordinated by six La3+cations, andManions surrounded by 8 La3+cations. These compounds are not charge‐balanced and lie on the border between intermetallic carbides and mixed anion salts. Density of states calculations show a pseudogap at the Fermi level for La3BiC2, which indicates that this compound is a poor metal with optimized LaBi bonding interactions.more » « less
An official website of the United States government

