skip to main content


Title: Hydrologic responses to climate warming for a snow-dominated watershed and a transient snow watershed in the California Sierra: Hydrologic responses to climate warming
NSF-PAR ID:
10079424
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecohydrology
Volume:
12
Issue:
1
ISSN:
1936-0584
Page Range / eLocation ID:
Article No. e2053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In complex terrain, drifting snow contributes to ecohydrologic landscape heterogeneity and ecological refugia. In this study, we assessed the climate sensitivity of hydrological dynamics in a semiarid mountainous catchment in the snow‐to‐rain transition zone. This catchment includes a distinct snow drift‐subsidized refugium that comprises a small portion (14.5%) of the watershed but accounts for a disproportionate amount (modeled average 56%) of hydrological flux generation. We conducted climate sensitivity experiments using a physically based hydrologic model to assess responses of a suite of hydrologic metrics across the watershed. Experiments with an imposed 3.5 °C warming showed reductions in average maximum snow water equivalent of 58–68% and deep percolation by 72%. While relative decreases were similar across the watershed, much greater absolute decreases in snowpack occurred in the drift‐subsidized site than the surrounding landscape. In drift‐subsidized locations, warming caused a shift from a regime that included both energy‐ and water‐limited evapotranspiration conditions to exclusively water‐limited conditions. Warming also resulted in altered interannual variability of hydrologic metrics. The drift‐subsidized unit was more sensitive to warming than the surrounding landscape, with reduced potential for the effects of warming to be offset by increased precipitation. Despite spatially homogeneous changes in climate, the effects of climate change on the hydrological dynamics were spatially heterogeneous in this watershed due to the presence of lateral water transport in the form of drifting snow. These findings suggest an increase in hydrologic homogeneity across the landscape and relatively large changes in snow drift‐subsidized refugia.

     
    more » « less
  2. Abstract

    This study investigates the impact of climate and land use change on the magnitude and timing of streamflow and sediment yield in a snow‐dominated mountainous watershed in Salt Lake County, Utah using a scenario approach and the Hydrological Simulation Program — FORTRAN model for the 2040s (year 2035–2044) and 2090s (year 2085–2094). The climate scenarios were statistically and dynamically downscaled from global climate models. Land use and land cover (LULC) changes were estimated in two ways — from a regional planning scenario and from a deterministic model. Results indicate the mean daily streamflow in the Jordan River watershed will increase by an amount ranging from 11.2% to 14.5% in the 2040s and from 6.8% to 15.3% in the 2090s. The respective increases in sediment load in the 2040s and 2090s is projected to be 6.7% and 39.7% in the canyons and about 7.4% to 14.2% in the Jordan valley. The historical 50th percentile timing of streamflow and sediment load is projected to be shifted earlier by three to four weeks by mid‐century and four to eight weeks by late‐century. The projected streamflow and sediment load results establish a nonlinear relationship with each other and are highly sensitive to projected climate change. The predicted changes in streamflow and sediment yield will have implications for water supply, flood control and stormwater management.

     
    more » « less
  3. Maier, Thomas (Ed.)
    Winters in northeastern North America have warmed faster than summers, with impacts on ecosystems and society. Global climate models (GCMs) indicate that winters will continue to warm and lose snow in the future, but uncertainty remains regarding the magnitude of warming. Here, we project future trends in winter indicators under lower and higher climate-warming scenarios based on emission levels across northeastern North America at a fine spatial scale (1/16°) relevant to climate-related decision making. Under both climate scenarios, winters continue to warm with coincident increases in days above freezing, decreases in days with snow cover, and fewer nights below freezing. Deep snowpacks become increasingly short-lived, decreasing from a historical baseline of 2 months of subnivium habitat to <1 month under the warmer, higher-emissions climate scenario. Warmer winter temperatures allow invasive pests such as Adelges tsugae (Hemlock Woolly Adelgid) and Dendroctonus frontalis (Southern Pine Beetle) to expand their range northward due to reduced overwinter mortality. The higher elevations remain more resilient to winter warming compared to more southerly and coastal regions. Decreases in natural snowpack and warmer temperatures point toward a need for adaptation and mitigation in the multi-million-dollar winter-recreation and forest-management economies. 
    more » « less