skip to main content


Title: New Statistical Approaches to Intra‐individual Isotopic Analysis and Modelling of Birth Seasonality in Studies of Herd Animals

This paper introduces improved methods for statistically assessing birth seasonality and intra‐annual variation inδ18O from faunal tooth enamel. The first method estimates input parameters for use with a previously developed parametric approach by C. Torneroet al. The second method uses a non‐parametric clustering procedure to group individuals with similar time‐series data and estimate birth seasonality. This method was successful in analysing data from a modern sample with known season of birth, as well as two heterogeneous archaeological data sets. Modelling indicates that the non‐parametric approach estimates birth seasonality more successfully than the parametric method when less of the tooth row is preserved. The new approach offers a high level of statistical rigour and flexibility in dealing with the time‐series data produced through intra‐individual sampling in isotopic analysis.

 
more » « less
NSF-PAR ID:
10079498
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Archaeometry
Volume:
61
Issue:
2
ISSN:
0003-813X
Page Range / eLocation ID:
p. 478-493
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Objectives

    This article presents estimates of narrow‐sense heritability and bivariate genetic correlation for 14 tooth crown morphological variants scored on permanent premolars, first molars, and second molars. The objective is to inform data collection and analytical practices in dental biodistance and to provide insights on the development of molar crowns as integrated structures.

    Materials and Methods

    African American dental casts from the Menegaz‐Bock collection were recorded for the Arizona State University Dental Anthropology System. Estimates of narrow‐sense heritability and genetic correlation were generated using SOLAR v.8.1.1, which included assessment of age, sex, and birth year as covariates. Both continuous scale and dichotomized estimates are provided.

    Results

    Heritability estimates were nonsignificant for the majority of variables; however, for variables yielding significant estimates, values were moderate to high in magnitude and comparable to previous studies. Comparing left and right‐side heritability estimates suggests directional asymmetry in the expression of environmental variance, something not seen in anterior tooth traits. Genetic correlations were moderate among antimeres and metameres and low for different traits scored on the same tooth crown. Although several negative correlations were noted, few reached statistical significance. Results affirm some of the current data cleaning and analytical practices in dental biodistance, but others are called into question. These include the pooling of males and females and combining left and right‐side data into a single dataset.

    Conclusions

    In comparison to anterior tooth crown traits, postcanine heritabilities were more often non‐significant; however, those traits with significant heritability also tended to produce higher estimates. Genetic correlations were unremarkable, in part, because they were underpowered. However, M1 results may provide insight into the complex relationship between genes, environment, and development in determining ultimate crown form.

     
    more » « less
  2. Abstract

    A hurricane event can often produce both intense rainfall and a storm tide that can cause a major compound flooding threat to coastlines. This paper examined applications of multivariate copula‐based time series models using data observed during Hurricane Irma (2017) along the coastlines of Florida, Georgia, and South Carolina, United States. Multivariate time series models were developed using bivariate copulas wherein storm tide and rainfall data were modeled using LOWESS‐based autoregressive moving average (ARMA).nsamples of observed data were then synthesized using a Monte Carlo approach in which the empirical copula and the parametric estimate of the copula were obtained to approximate two‐sidedp‐values using the Rosenblatt probability integral transform method. Analysis suggested that proper selection of the underlying LOWESS‐based ARMA model was the crucial aspect for modeling compound flooding wherein Archimedean, Elliptical, and Extreme Value copulas all offered consistent flexibility in terms of dependence modeling. As a backdrop to compound flood probabilities, this research also outlined both theoretical and applied frameworks for the calculation of non‐exceedance probabilities in a multidimensional environment using classical isofrequency probability assumptions for the “AND” (a bivariate joint probability) and Survival Kendall definitions. Random realizations from storm copulas combined with multivariate non‐exceedance probability definitions ultimately showed there were periods of temporal yet cyclical high intensities that lasted 1–2 hr. Lastly, a discussion is presented on the broader application of the proposed methodology within the field of engineering design and risk management which may serve as a catalyst for the continued research in compound flooding.

     
    more » « less
  3. Abstract

    The analysis of time series data with detection limits is challenging due to the high‐dimensional integral involved in the likelihood. Existing methods are either computationally demanding or rely on restrictive parametric distributional assumptions. We propose a semiparametric approach, where the temporal dependence is captured by parametric copula, while the marginal distribution is estimated non‐parametrically. Utilizing the properties of copulas, we develop a new copula‐based sequential sampling algorithm, which provides a convenient way to calculate the censored likelihood. Even without full parametric distributional assumptions, the proposed method still allows us to efficiently compute the conditional quantiles of the censored response at a future time point, and thus construct both point and interval predictions. We establish the asymptotic properties of the proposed pseudo maximum likelihood estimator, and demonstrate through simulation and the analysis of a water quality data that the proposed method is more flexible and leads to more accurate predictions than Gaussian‐based methods for non‐normal data.The Canadian Journal of Statistics47: 438–454; 2019 © 2019 Statistical Society of Canada

     
    more » « less
  4. Abstract

    Gridded monthly rainfall estimates can be used for a number of research applications, including hydrologic modeling and weather forecasting. Automated interpolation algorithms, such as the “autoKrige” function in R, can produce gridded rainfall estimates that validate well but produce unrealistic spatial patterns. In this work, an optimized geostatistical kriging approach is used to interpolate relative rainfall anomalies, which are then combined with long-term means to develop the gridded estimates. The optimization consists of the following: 1) determining the most appropriate offset (constant) to use when log-transforming data; 2) eliminating poor quality data prior to interpolation; 3) detecting erroneous maps using a machine learning algorithm; and 4) selecting the most appropriate parameterization scheme for fitting the model used in the interpolation. Results of this effort include a 30-yr (1990–2019), high-resolution (250-m) gridded monthly rainfall time series for the state of Hawai‘i. Leave-one-out cross validation (LOOCV) is performed using an extensive network of 622 observation stations. LOOCV results are in good agreement with observations (R2= 0.78; MAE = 55 mm month−1; 1.4%); however, predictions can underestimate high rainfall observations (bias = 34 mm month−1; −1%) due to a well-known smoothing effect that occurs with kriging. This research highlights the fact that validation statistics should not be the sole source of error assessment and that default parameterizations for automated interpolation may need to be modified to produce realistic gridded rainfall surfaces. Data products can be accessed through the Hawai‘i Data Climate Portal (HCDP;http://www.hawaii.edu/climate-data-portal).

    Significance Statement

    A new method is developed to map rainfall in Hawai‘i using an optimized geostatistical kriging approach. A machine learning technique is used to detect erroneous rainfall maps and several conditions are implemented to select the optimal parameterization scheme for fitting the model used in the kriging interpolation. A key finding is that optimization of the interpolation approach is necessary because maps may validate well but have unrealistic spatial patterns. This approach demonstrates how, with a moderate amount of data, a low-level machine learning algorithm can be trained to evaluate and classify an unrealistic map output.

     
    more » « less
  5. Objectives

    Ecological factors, but also tooth‐to‐tooth contact over time, have a dramatic effect on tooth wear in primates. The aim of this study is to test whether incisor tooth wear changes predictably with age and can thus be used as an age estimation method in a wild population of mountain gorillas (Gorilla beringei beringei) from Volcanoes National Park, Rwanda.

    Materials and methods

    In mountain gorillas of confidently known chronological age (N = 24), we measured the crown height of all permanent maxillary and mandibular incisors (I1, I1, I2, I2) as a proxy for incisal macrowear. Linear and quadratic regressions for each incisor were used to test whether age can be predicted by crown height. Using these models, we then predicted age at death of two individual mountain gorillas of probable identifications, based on their incisor crown height.

    Results

    Age decreased significantly with incisor height for all teeth, but the upper first incisors (I1) provided the best results, with the lowest Akaike's Information Criterion corrected for small sample size (AICc) and lowest Standard Error of the Estimate (SEE). When the best age equations for each sex were applied to gorillas with probable identifications, the predicted ages differed 1.58 and 3.33 years from the probable ages of these individuals.

    Conclusions

    Our findings corroborate that incisor crown height, a proxy for incisal wear, varies predictably with age. This relationship can be used to estimate age at death of unknown gorillas in the skeletal collection, and in some cases, to corroborate the identity of individual gorillas recovered from the forest postmortem at an advanced state of decomposition. Such identifications help fill gaps in the demographic database and support research that requires individual‐level data.

     
    more » « less