skip to main content

Title: Heating of the intergalactic medium by the cosmic microwave background during cosmic dawn
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review D
2470-0010; PRVDAQ
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆ starburst, and L⋆ galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ-ray emission from nearby and starburst galaxies. We reproduce the γ-ray observations of dwarf and L⋆ galaxies with constant isotropic diffusion coefficient κ ∼ 3 × 1029 cm2 s−1. Advection-only and streaming-only models produce order-of-magnitude too large γ-ray luminosities in dwarf and L⋆ galaxies. We show that in models that match the γ-ray observations, most CRs escape low-gas-density galaxies (e.g. dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ-ray emissivities. Models where CRs are “trapped” in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ-ray observations. For models with constant κ that match the γ-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc. 
    more » « less
  2. We compare the random error statistics (uncertainties) of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate, C1) and COSMIC-2 (C2) radio occultation (RO) bending angles and refractivities for the months of August 2006 and 2021 over the tropics and subtropics using the three-cornered hat method. The uncertainty profiles are similar for the two RO missions in the troposphere. However, a higher percentage of C2 profiles reach close to the surface in the moisture-rich tropics, an advantage of the higher signal-to-noise ratio (SNR) in C2. C2 uses signals from both GPS (Global Positioning System) and GLONASS Global Navigation System Satellites (GNSS). The GPS occultations show smaller uncertainties in the stratosphere and lower mesosphere (30–60 km) than the GLONASS occultations, a result of more accurate GPS clocks. Therefore, C2 (GPS) uncertainties are smaller than C1 uncertainties between 30–60 km while the C2 (GLONASS) uncertainties are larger than those of C1. The uncertainty profiles vary with latitude at all levels. We find that horizontal gradients in temperature and water vapor, and therefore refractivity, are the major cause of uncertainties in the tropopause region and troposphere through the violation of the assumption of spherical symmetry in the retrieval of bending angles and refractivity. 
    more » « less
  3. Abstract FORMOSAT-3/COSMIC (F3/C) constellation of six micro-satellites was launched into the circular low-earth orbit at 800 km altitude with a 72-degree inclination angle on 15 April 2006, uniformly monitoring the ionosphere by the GPS (Global Positioning System) Radio Occultation (RO). Each F3/C satellite is equipped with a TIP (Tiny Ionospheric Photometer) observing 135.6 nm emissions and a TBB (Tri-Band Beacon) for conducting ionospheric tomography. More than 2000 RO profiles per day for the first time allows us globally studying three-dimensional ionospheric electron density structures and formation mechanisms of the equatorial ionization anomaly, middle-latitude trough, Weddell/Okhotsk Sea anomaly, etc. In addition, several new findings, such as plasma caves, plasma depletion bays, etc., have been reported. F3/C electron density profiles together with ground-based GPS total electron contents can be used to monitor, nowcast, and forecast ionospheric space weather. The S4 index of GPS signal scintillations recorded by F3/C is useful for ionospheric irregularities monitoring as well as for positioning, navigation, and communication applications. F3/C was officially decommissioned on 1 May 2020 and replaced by FORMOSAT-7/COSMIC-2 (F7/C2). F7/C2 constellation of six small satellites was launched into the circular low-Earth orbit at 550 km altitude with a 24-degree inclination angle on 25 June 2019. F7/C2 carries an advanced TGRS (Tri Gnss (global navigation satellite system) Radio occultation System) instrument, which tracks more than 4000 RO profiles per day. Each F7/C2 satellite also has a RFB (Radio Reference Beacon) on board for ionospheric tomography and an IVM (Ion Velocity Meter) for measuring ion temperature, velocity, and density. F7/C2 TGRS, IVM, and RFB shall continue to expand the F3/C success in the ionospheric space weather forecasting. 
    more » « less