This study aimed to understand extracellular mechanical stimuli’s effect on prostate cancer cells’ metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain). The changes in prostate cancer cells’ cytoskeletal reorganization, polarity (elongation index), proliferation, expression level of N-Cadherin (metastasis-associated gene), and migratory potential within the 3D collagen structures were assessed upon mechanical stimuli. The results have shown that static mechanical stimuli increased the metastasis progression factors, including cell elongation (p < 0.001), cellular F-actin accumulation (p < 0.001), actin polymerization (p < 0.001), N-Cadherin gene expression, and invasion capacity of PC-3 cells within a bone-like microenvironment compared to its cyclic and control loading counterparts. This study established a novel system for studying metastatic cancer cells within bone and enables the creation of biomimetic in vitro models for cancer research and mechanobiology.
more »
« less
Epithelial Cell Chirality Revealed by Three-Dimensional Spontaneous Rotation
Our understanding of the left–right (LR) asymmetry of embryonic development, in particular the contribution of intrinsic handedness of the cell or cell chirality, is limited due to the confounding systematic and environmental factors during morphogenesis and a ack of physiologically relevant in vitro 3D platforms. Here we report an efficient two-layered biomaterial platform for determining the chirality of individual cells, cell aggregates, and self-organized hollow epithelial spheroids. This bioengineered niche provides a uniform defined axis allowing for cells to rotate spontaneously with a directional bias toward either clockwise or counterclockwise directions. Mechanistic studies reveal an actin-dependent, cell-intrinsic property of 3D chirality that can be mediated by actin cross-linking via α-actinin-1. Our findings suggest that the gradient of extracellular matrix is an important biophysicochemical cue influencing cell polarity and chirality. Engineered biomaterial systems can serve as an effective platform for studying developmental asymmetry and screening for environmental factors causing birth defects.
more »
« less
- Award ID(s):
- 1725984
- PAR ID:
- 10079581
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 115
- Issue:
- 48
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 12188-12193
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Mical family enzymes are unusual actin regulators that prime filaments (F-actin) for disassembly via the site-specific oxidation of M44/M47. Filamentous actin acts as a substrate of Mical enzymes, as well as an activator of their NADPH oxidase activity, which leads to hydrogen peroxide generation. Mical enzymes are required for cytokinesis, muscle and heart development, dendritic pruning, and axonal guidance, among other processes. Thus, it is critical to understand how this family of actin regulators functions in different cell types. Vertebrates express six actin isoforms in a cell-specific manner, but MICALs’ impact on their intrinsic properties has never been systematically investigated. Our data reveal the differences in the intrinsic dynamics of Mical-oxidized actin isoforms. Furthermore, our results connect the intrinsic dynamics of actin isoforms and their redox state with the patterns of hydrogen peroxide (H2O2) generation by MICALs. We documented that the differential properties of actin isoforms translate into the distinct patterns of hydrogen peroxide generation in Mical/NADPH-containing systems. Moreover, our results establish a conceptual link between actin stabilization by interacting factors and its ability to activate MICALs’ NADPH oxidase activity. Altogether, our results suggest that the regulatory impact of MICALs may differ depending on the isoform-related identities of local actin networks.more » « less
-
Abstract Synthetic cells offer a versatile platform for addressing biomedical and environmental challenges, due to their modular design and capability to mimic cellular processes such as biosensing, intercellular communication, and metabolism. Constructing synthetic cells capable of stimuli‐responsive secretion is vital for applications in targeted drug delivery and biosensor development. Previous attempts at engineering secretion for synthetic cells have been confined to non‐specific cargo release via membrane pores, limiting the spatiotemporal precision and specificity necessary for selective secretion. Here, a protein‐based platform termed TEV Protease‐mediated Releasable Actin‐binding Protein (TRAP) is designed and constructed for selective, rapid, and triggerable secretion in synthetic cells. TRAP is designed to bind tightly to reconstituted actin networks and is proteolytically released from bound actin, followed by secretion via cell‐penetrating peptide membrane translocation. TRAP's efficacy in facilitating light‐activated secretion of both fluorescent and luminescent proteins is demonstrated. By equipping synthetic cells with a controlled secretion mechanism, TRAP paves the way for the development of stimuli‐responsive biomaterials, versatile synthetic cell‐based biosensing systems, and therapeutic applications through the integration of synthetic cells with living cells for targeted delivery of protein therapeutics.more » « less
-
Actin plays critical roles in various cellular functions, including cell morphogenesis, differentiation, and movement. The assembly of actin monomers into double-helical filaments is regulated in surrounding microenvironments. Graphene is an attractive nanomaterial that has been used in various biomaterial applications, such as drug delivery cargo and scaffold for cells, due to its unique physical and chemical properties. Although several studies have shown the potential effects of graphene on actin at the cellular level, the direct influence of graphene on actin filament dynamics has not been studied. Here, we investigate the effects of graphene on actin assembly kinetics using spectroscopy and total internal reflection fluorescence microscopy. We demonstrate that graphene enhances the rates of actin filament growth in a concentration-dependent manner. Furthermore, cell morphology and spreading are modulated in mouse embryo fibroblast NIH-3T3 cultured on a graphene surface without significantly affecting cell viability. Taken together, these results suggest that graphene may have a direct impact on actin cytoskeleton remodeling.more » « less
-
Single-molecule super-resolution imaging is instrumental in investigating cellular architecture and organization at the nanoscale. Achieving precise 3D nanometric localization when imaging structures throughout mammalian cells, which can be multiple microns thick, requires careful selection of the illumination scheme in order to optimize the fluorescence signal to background ratio (SBR). Thus, an optical platform that combines different wide-field illumination schemes for target-specific SBR optimization would facilitate more precise 3D nanoscale studies of a wide range of cellular structures. Here, we demonstrate a versatile multimodal illumination platform that integrates the sectioning and background reduction capabilities of light sheet illumination with homogeneous, flat-field epi- and TIRF illumination. Using primarily commercially available parts, we combine the fast and convenient switching between illumination modalities with point spread function engineering to enable 3D single-molecule super-resolution imaging throughout mammalian cells. For targets directly at the coverslip, the homogenous intensity profile and excellent sectioning of our flat-field TIRF illumination scheme improves single-molecule data quality by providing low fluorescence background and uniform fluorophore blinking kinetics, fluorescence signal, and localization precision across the entire field of view. The increased contrast achieved with LS illumination, when compared with epi-illumination, makes this illumination modality an excellent alternative when imaging targets that extend throughout the cell. We validate our microscopy platform for improved 3D super-resolution imaging by two-color imaging of paxillin – a protein located in the focal adhesion complex – and actin in human osteosarcoma cells.more » « less
An official website of the United States government
