skip to main content

Title: Detecting and explaining why aquifers occasionally become degraded near hydraulically fractured shale gas wells

Extensive development of shale gas has generated some concerns about environmental impacts such as the migration of natural gas into water resources. We studied high gas concentrations in waters at a site near Marcellus Shale gas wells to determine the geological explanations and geochemical implications. The local geology may explain why methane has discharged for 7 years into groundwater, a stream, and the atmosphere. Gas may migrate easily near the gas wells in this location where the Marcellus Shale dips significantly, is shallow (∼1 km), and is more fractured. Methane and ethane concentrations in local water wells increased after gas development compared with predrilling concentrations reported in the region. Noble gas and isotopic evidence are consistent with the upward migration of gas from the Marcellus Formation in a free-gas phase. This upflow results in microbially mediated oxidation near the surface. Iron concentrations also increased following the increase of natural gas concentrations in domestic water wells. After several months, both iron and SO42−concentrations dropped. These observations are attributed to iron and SO42−reduction associated with newly elevated concentrations of methane. These temporal trends, as well as data from other areas with reported leaks, document a way to distinguish newly migrated methane from more » preexisting sources of gas. This study thus documents both geologically risky areas and geochemical signatures of iron and SO42−that could distinguish newly leaked methane from older methane sources in aquifers.

« less
; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 12349-12358
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Streams and rivers are significant sources of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) globally, and watershed management can alter greenhouse gas (GHG) emissions from streams. We hypothesized that urban infrastructure significantly alters downstream water quality and contributes to variability in GHG saturation and emissions. We measured gas saturation and estimated emission rates in headwaters of two urban stream networks (Red Run and Dead Run) of the Baltimore Ecosystem Study Long-Term Ecological Research project. We identified four combinations of stormwater and sanitary infrastructure present in these watersheds, including: (1) stream burial, (2) inline stormwater wetlands, (3) riparian/floodplain preservation, and (4) septic systems. We selected two first-order catchments in each of these categories and measured GHG concentrations, emissions, and dissolved inorganic and organic carbon (DIC and DOC) and nutrient concentrations biweekly for 1 year. From a water quality perspective, the DOC : NO3 ratio of streamwater was significantly different across infrastructure categories. Multiple linear regressions including DOC : NO3 and other variables (dissolved oxygen, DO; total dissolved nitrogen, TDN; and temperature) explained much of the statistical variation in nitrous oxide (N2O, r2 =  0.78), carbon dioxide (CO2, r2 =  0.78), and methane (CH4, r2 =  0.50) saturation in stream water. We measured N2O saturation ratios, which were among the highest reported in the literaturemore »for streams, ranging from 1.1 to 47 across all sites and dates. N2O saturation ratios were highest in streams draining watersheds with septic systems and strongly correlated with TDN. The CO2 saturation ratio was highly correlated with the N2O saturation ratio across all sites and dates, and the CO2 saturation ratio ranged from 1.1 to 73. CH4 was always supersaturated, with saturation ratios ranging from 3.0 to 2157. Longitudinal surveys extending form headwaters to third-order outlets of Red Run and Dead Run took place in spring and fall. Linear regressions of these data yielded significant negative relationships between each gas with increasing watershed size as well as consistent relationships between solutes (TDN or DOC, and DOC : TDN ratio) and gas saturation. Despite a decline in gas saturation between the headwaters and stream outlet, streams remained saturated with GHGs throughout the drainage network, suggesting that urban streams are continuous sources of CO2, CH4, and N2O. Our results suggest that infrastructure decisions can have significant effects on downstream water quality and greenhouse gases, and watershed management strategies may need to consider coupled impacts on urban water and air quality.« less
  2. Abstract

    Efficient conversion of methane to value-added products such as olefins and aromatics has been in pursuit for the past few decades. The demand has increased further due to the recent discoveries of shale gas reserves. Oxidative and non-oxidative coupling of methane (OCM and NOCM) have been actively researched, although catalysts with commercially viable conversion rates are not yet available. Recently,$${{{{{{{\mathrm{Sr}}}}}}}}_2Fe_{1.5 + 0.075}Mo_{0.5}O_{6 - \delta }$$Sr2Fe1.5+0.075Mo0.5O6δ(SFMO-075Fe) has been reported to activate methane in an electrochemical OCM (EC-OCM) set up with a C2 selectivity of 82.2%1. However, alkaline earth metal-based materials are known to suffer chemical instability in carbon-rich environments. Hence, here we evaluated the chemical stability of SFMO in carbon-rich conditions with varying oxygen concentrations at temperatures relevant for EC-OCM. SFMO-075Fe showed good methane activation properties especially at low overpotentials but suffered poor chemical stability as observed via thermogravimetric, powder XRD, and XPS measurements where SrCO3was observed to be a major decomposition product along with SrMoO3and MoC. Nevertheless, our study demonstrates that electrochemical methods could be used to selectively activate methane towards partial oxidation products such as ethylene at low overpotentials while higher applied biases result in the complete oxidation of methane to carbon dioxide and water.

  3. Abstract

    Recent advances in shale gas development have largely outpaced efforts to manage associated waste streams that pose significant environmental risks. Wastewater management presents significant challenges in the Marcellus shale, where increasing fluid volumes concomitant with expanding development will threaten to overwhelm existing infrastructure over the next decade. In this work, we forecast growth in drilling, flowback, and produced fluid volumes through 2025 based on historic data and consider conventional and alternative disposal options to meet future demands. The results indicate that nearly 12 million m3(74 MMbbl) of wastewater will be generated annually by 2025. Even assuming wastewater recycling rates in the region rebound, meeting increased demands for wastewater that cannot be reused due to poor quality or logistics would require significant capital investment to expand existing disposal pathways, namely treatment and discharge at centralized facilities or dedicated brine injection in Ohio. Here, we demonstrate the logistical and environmental advantages of an alternative strategy: repurposing depleted oil and gas wells for dedicated injection of wastewater that cannot otherwise be reused or recycled. Hubs of depleted wells could accommodate projected increases in wastewater volumes more efficiently than existing disposal options, primarily because the proximity of depleted wells to active production sitesmore »would substantially reduce wastewater transport distances and associated costs. This study highlights the need to reevaluate regional-scale shale wastewater management practices in the context of evolving wastewater qualities and quantities, as strategic planning will result in more socially and economically favorable options while avoiding adverse environmental impacts that have overshadowed the environmental benefits of natural gas expansion in the energy sector.

    « less
  4. While development of the Utica/Point Pleasant Shale (UPP) is extensive in Ohio (U.S.) and increasing in Pennsylvania and West Virginia, few studies report the chemistry of produced waters from UPP wells. These data have important implications for developing best management practices for handling and waste disposal, or identifying the fluid in the event of accidental spill events. Here, we evaluated the elemental and isotope chemistry of UPP produced waters from 26 wells throughout Ohio, Pennsylvania, and West Virginia to determine any unique fluid chemistries that could be used for forensic studies. Compared to the Marcellus, UPP produced waters contain higher activities of total radium ( 226 Ra + 228 Ra) and higher 228 Ra/ 226 Ra ratios. As with the Marcellus Shale, elemental ratios (Sr/Ca) and isotope ratios ( 87 Sr/ 86 Sr) can distinguish UPP produced waters from many conventional oil and gas formations. Sr/Ca and 87 Sr/ 86 Sr ratios can fingerprint small fractions (∼0.1%) of UPP produced water in freshwater. However, because Marcellus and UPP produced waters display similar major elemental chemistry ( i.e. , Na, Ca, and Cl) and overlapping ratios of Sr/Ca and 87 Sr/ 86 Sr, 228 Ra/ 226 Ra ratios may be themore »best tracer to distinguish these waters.« less
  5. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>