We are now over four decades into digitally managing the names of Earth's species. As the number of federating (i.e., software that brings together previously disparate projects under a common infrastructure, for example TaxonWorks) and aggregating (e.g., International Plant Name Index, Catalog of Life (CoL)) efforts increase, there remains an unmet need for both the migration forward of old data, and for the production of new, precise and comprehensive nomenclatural catalogs. Given this context, we provide an overview of how TaxonWorks seeks to contribute to this effort, and where it might evolve in the future. In TaxonWorks, when we talk about governed names and relationships, we mean it in the sense of existing international codes of nomenclature (e.g., the International Code of Zoological Nomenclature (ICZN)). More technically, nomenclature is defined as a set of objective assertions that describe the relationships between the names given to biological taxa and the rules that determine how those names are governed. It is critical to note that this is not the same thing as the relationship between a name and a biological entity, but rather nomenclature in TaxonWorks represents the details of the (governed) relationships between names. Rather than thinking of nomenclature as changingmore »
TaxonWorks: a Use Case in Documenting of Etymology of Generic Names in Auchenorrhyncha (Hemiptera)
The 3i World Auchenorrhyncha database (http://dmitriev.speciesfile.org) is being migrated into TaxonWorks (http://taxonworks.org) and comprises nomenclatural data for all known Auchenorrhyncha taxa (leafhoppers, planthoppers, treehoppers, cicadas, spittle bugs). Of all those scientific names, 8,700 are unique genus-group names (which include valid genera and subgenera as well as their synonyms). According to the Rules of Zoological Nomenclature, a properly formed species-group name when combined with a genus-group name must agree with the latter in gender if the species-group name is or ends with a Latin or Latinized adjective or participle. This provides a double challenge for researchers describing new or citing existing taxa. For each species, the knowledge about the part of speech is essential information (nouns do not change their form when associated with different generic names). For the genus, the knowledge of the gender is essential information. Every time the species is transferred from one genus to another, its ending may need to be transformed to make a proper new scientific name (a binominal name). In modern day practice, it is important, when establishing a new name, to provide information about etymology of this name and the ways it should be used in the future publications: the grammatical gender for more »
- Award ID(s):
- 1639601
- Publication Date:
- NSF-PAR ID:
- 10079956
- Journal Name:
- Biodiversity Information Science and Standards
- Volume:
- 2
- Page Range or eLocation-ID:
- e25724
- ISSN:
- 2535-0897
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large systematic revisionary projects incorporating data for hundreds or thousands of taxa require an integrative approach, with a strong biodiversity-informatics core for efficient data management to facilitate research on the group. Our original biodiversity informatics platform, 3i (Internet-accessible Interactive Identification) combined a customized MS Access database backend with ASP-based web interfaces to support revisionary syntheses of several large genera of leafhopers (Hemiptera: Auchenorrhyncha: Cicadellidae). More recently, for our National Science Foundation sponsored project, “GoLife: Collaborative Research: Integrative genealogy, ecology and phenomics of deltocephaline leafhoppers (Hemiptera: Cicadellidae), and their microbial associates”, we selected the new open-source platform TaxonWorks as the cyberinfrastructure. In the scope of the project, the original “3i World Auchenorrhyncha Database” was imported into TaxonWorks. At the present time, TaxonWorks has many tools to automatically import nomenclature, citations, and specimen based collection data. At the time of the initial migration of the 3i database, many of those tools were still under development, and complexity of the data in the database required a custom migration script, which is still probably the most efficient solution for importing datasets with long development history. At the moment, the World Auchenorrhyncha Database comprehensively covers nomenclature of the group and includes data on 70 validmore »
-
The World Auchenorrhyncha Database comprises nomenclatural information for all known taxa in this suborder of Hemipteran insects (leafhoppers, planthoppers, treehoppers, cicadas, and spittle bugs). Of more than 110,000 included scientific names, 8,921 represent unique genus–group names (valid genera and subgenera as well as their synonyms). An attempt is being made to resolve the etymology of those names to clarify nomenclatural issues in this group of insects.
-
This catalogue includes all valid family-group (six subtribes), genus-group (55 genera, 33 subgenera), and species-group names (1009 species and subspecies) of Sepidiini darkling beetles (Coleoptera: Tenebrionidae: Pimeliinae), and their available synonyms. For each name, the author, year, and page number of the description are provided, with additional information (e.g., type species for genus-group names, author of synonymies for invalid taxa, notes) depending on the taxon rank. Verified distributional records (loci typici and data acquired from revisionary publications) for all the species are gathered. Distribution of the subtribes is illustrated and discussed. Several new nomenclatural acts are included. The generic names Phanerotomea Koch, 1958 [= Ocnodes Fåhraeus, 1870] and Parmularia Koch, 1955 [= Psammodes Kirby, 1819] are new synonyms (valid names in square brackets). The following new combinations are proposed: Ocnodesacuductusacuductus (Ancey, 1883), O. acuductusufipanus (Koch, 1952), O. adamantinus (Koch, 1952), O. argenteofasciatus (Koch, 1953), O. arnoldiarnoldi (Koch, 1952), O. arnoldisabianus (Koch, 1952), O.barbosai (Koch, 1952), O.basilewskyi (Koch, 1952), O.bellmarleyi (Koch, 1952), O. benguelensis (Koch, 1952), O. bertolonii (Guérin-Méneville, 1844), O. blandus (Koch, 1952), O. brevicornis (Haag-Rutenberg, 1875), O. brunnescensbrunnescens (Haag-Rutenberg, 1871), O. brunnescensmolestus (Haag-Rutenberg, 1875), O. buccinator (Koch, 1952), O. bushmanicus (Koch, 1952), O. carbonarius (Gerstaecker, 1854), O. cardiopterus (Fairmaire,more »
-
Summary Recent molecular phylogenetic results have demonstrated that Monechma s.l., a group of plants with ecological importance in the savanna and succulent biomes of sub-Saharan Africa, is polyphyletic with two discrete lineages recognisable. In the present work, we recognise Monechma Groups I and II at the generic rank, which can be distinguished by differences in inflorescence characteristics and seed morphology. The nomenclatural implications of these findings are investigated. The lectotype of Monechma , M. bracteatum Hochst., is a part of a small lineage of plants closely allied to Justicia L. sect. Harnieria (Solms) Benth. for which the earliest valid name is found to be Meiosperma Raf. Hence, Monechma is synonymised within Meiosperma , which comprises six accepted species and two undescribed taxa. The majority of species of former Monechma s.l. are resolved within the second lineage for which the only validly published generic name is Pogonospermum Hochst. This resurrected genus comprises 34 accepted species plus two undescribed taxa. Pogonospermum displays considerable morphological variation and is here subdivided into six sections based primarily on differences in plant habit, inflorescence form, calyx, bract and bracteole venation, and seed indumentum. The new combinations and new sections are validated, and seven accepted species namesmore »