skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Machine learning enabled gearbox fault pattern recognition
Fault pattern recognition in complex mechanical systems such as gearbox has always been a great challenge. The performance of a classic fault pattern recognition approach heavily depends on domain expertise and the classifier applied. This paper proposes a deep convolutional neural network-based transfer learning approach that not only entertains adaptive feature extractions, but also requires only a small set of training data. The proposed transfer learning architecture essentially consists of two sequentially connected pieces; first is of a pre-trained deep neural network that serves to extract features automatically, the second piece is a neural network aimed for classification which is to be trained using data collected from gearbox experiment. The proposed approach performs gear fault pattern recognition using raw accelerometer data. The achieved accuracy indicates that the proposed approach is not only sensitive and robust in performance, but also has the potential to be applied to other pattern recognition practices.  more » « less
Award ID(s):
1741174
PAR ID:
10080017
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of 2018 International Symposium on Flexible Automation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Due to insufficient training data and the high computational cost to train a deep neural network from scratch, transfer learning has been extensively used in many deep-neural-network-based applications. A commonly used transfer learning approach involves taking a part of a pre-trained model, adding a few layers at the end, and re-training the new layers with a small dataset. This approach, while efficient and widely used, imposes a security vulnerability because the pre-trained model used in transfer learning is usually publicly available, including to potential attackers. In this paper, we show that without any additional knowledge other than the pre-trained model, an attacker can launch an effective and efficient brute force attack that can craft instances of input to trigger each target class with high confidence. We assume that the attacker has no access to any target-specific information, including samples from target classes, re-trained model, and probabilities assigned by Softmax to each class, and thus making the attack target-agnostic. These assumptions render all previous attack models inapplicable, to the best of our knowledge. To evaluate the proposed attack, we perform a set of experiments on face recognition and speech recognition tasks and show the effectiveness of the attack. Our work reveals a fundamental security weakness of the Softmax layer when used in transfer learning settings 
    more » « less
  2. Due to insufficient training data and the high computational cost to train a deep neural network from scratch, transfer learning has been extensively used in many deep-neural-network-based applications. A commonly used transfer learning approach involves taking a part of a pre-trained model, adding a few layers at the end, and re-training the new layers with a small dataset. This approach, while efficient and widely used, imposes a security vulnerability because the pre-trained model used in transfer learning is usually publicly available, including to potential attackers. In this paper, we show that without any additional knowledge other than the pre-trained model, an attacker can launch an effective and efficient brute force attack that can craft instances of input to trigger each target class with high confidence. We assume that the attacker has no access to any target-specific information, including samples from target classes, re-trained model, and probabilities assigned by Softmax to each class, and thus making the attack target-agnostic. These assumptions render all previous attack models inapplicable, to the best of our knowledge. To evaluate the proposed attack, we perform a set of experiments on face recognition and speech recognition tasks and show the effectiveness of the attack. Our work reveals a fundamental security weakness of the Softmax layer when used in transfer learning settings. 
    more » « less
  3. This study proposes a novel dynamical mechanism for pattern recognition discovered by interpreting a recurrent neural network (RNN) trained on a simple task inspired by the SET card game. We interpreted the trained RNN as recognizing patterns via phase shifts in a low-dimensional limit cycle in a manner analogous to transitions in a finite state automaton (FSA). We further validated this interpretation by handcrafting a simple oscillatory model that reproduces the dynamics of the trained RNN. Our findings not only suggest of a potential dynamical mechanism capable of pattern recognition, but also suggest of a potential neural implementation of FSA. Above all, this work contributes to the growing discourse on deep learning model interpretability. 
    more » « less
  4. Transfer learning uses a data model, trained to make predictions or inferences on data from one population, to make reliable predictions or inferences on data from another population. Most existing transfer learning approaches are based on fine-tuning pre-trained neural network models, and fail to provide crucial uncertainty quantification. We develop a statistical framework for model predictions based on transfer learning, called RECaST. The primary mechanism is a Cauchy random effect that recalibrates a source model to a target population; we mathematically and empirically demonstrate the validity of our RECaST approach for transfer learning between linear models, in the sense that prediction sets will achieve their nominal stated coverage, and we numerically illustrate the method's robustness to asymptotic approximations for nonlinear models. Whereas many existing techniques are built on particular source models, RECaST is agnostic to the choice of source model, and does not require access to source data. For example, our RECaST transfer learning approach can be applied to a continuous or discrete data model with linear or logistic regression, deep neural network architectures, etc. Furthermore, RECaST provides uncertainty quantification for predictions, which is mostly absent in the literature. We examine our method's performance in a simulation study and in an application to real hospital data. 
    more » « less
  5. null (Ed.)
    Network intrusion detection systems (NIDSs) play an essential role in the defense of computer networks by identifying a computer networks' unauthorized access and investigating potential security breaches. Traditional NIDSs encounters difficulties to combat newly created sophisticated and unpredictable security attacks. Hence, there is an increasing need for automatic intrusion detection solution that can detect malicious activities more accurately and prevent high false alarm rates (FPR). In this paper, we propose a novel network intrusion detection framework using a deep neural network based on the pretrained VGG-16 architecture. The framework, TL-NID (Transfer Learning for Network Intrusion Detection), is a two-step process where features are extracted in the first step, using VGG-16 pre-trained on ImageNet dataset and in the 2 nd step a deep neural network is applied to the extracted features for classification. We applied TL-NID on NSL-KDD, a benchmark dataset for network intrusion, to evaluate the performance of the proposed framework. The experimental results show that our proposed method can effectively learn from the NSL-KDD dataset with producing a realistic performance in terms of accuracy, precision, recall, and false alarm. This study also aims to motivate security researchers to exploit different state-of-the-art pre-trained models for network intrusion detection problems through valuable knowledge transfer. 
    more » « less