skip to main content


Title: Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host

Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF),Macrosteles quadrilineatus(Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes:Nasuia(112 kb) andSulcia(190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host–symbiont system.

 
more » « less
NSF-PAR ID:
10080026
Author(s) / Creator(s):
; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
50
ISSN:
0027-8424
Page Range / eLocation ID:
p. E11691-E11700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Auchenorrhynchan insects (Hemiptera) generally depend on two bacterial symbionts for nutrition. These bacteria experience extreme genome reduction and loss of essential cell functions that require direct host support, or the replacement of failing symbionts with more capable ones. However, it remains unclear how hosts adapt to integrate symbionts into their systems, particularly when they are replaced. Here, we comparatively investigated the evolution of host-support mechanisms in the glassy-winged sharpshooter, Homalodisca vitripennis (GWSS), and the aster leafhopper, Macrosteles quadrilineatus (ALF). ALF harbors the ancestral co-symbionts of the Auchenorrhyncha that have tiny genomes, Sulcia (190 kb) and Nasuia (112 kb). In GWSS, Sulcia retains an expanded genome (245 kb), but Nasuia was replaced by the more capable Baumannia (686 kb). To support their symbionts, GWSS and ALF have evolved novel mechanisms via horizontal gene transfer, gene duplication, and co-option of mitochondrial support genes. However, GWSS has fewer support systems targeting essential bacterial processes. In particular, although both hosts use ancestral mechanisms to support Sulcia, GWSS does not encode all of the same support genes required to sustain Sulcia-ALF or Nasuia. Moreover, GWSS support of Baumannia is far more limited and tailored to its expanded capabilities. Our results demonstrate how symbiont replacements shape host genomes and the co-evolutionary process.

     
    more » « less
  2. Abstract

    Leafhoppers comprise over 20,000 plant‐sap feeding species, many of which are important agricultural pests. Most species rely on two ancestral bacterial symbionts,SulciaandNasuia, for essential nutrition lacking in their phloem and xylem plant sap diets. To understand how pest leafhopper genomes evolve and are shaped by microbial symbioses, we completed a chromosomal‐level assembly of the aster leafhopper's genome (ALF;Macrosteles quadrilineatus). We compared ALF's genome to three other pest leafhoppers,Nephotettix cincticeps,Homalodisca vitripennis, andEmpoasca onukii, which have distinct ecologies and symbiotic relationships. Despite diverging ~155 million years ago, leafhoppers have high levels of chromosomal synteny and gene family conservation. Conserved genes include those involved in plant chemical detoxification, resistance to various insecticides, and defence against environmental stress. Positive selection acting upon these genes further points to ongoing adaptive evolution in response to agricultural environments. In relation to leafhoppers' general dependence on symbionts, species that retain the ancestral symbiont,Sulcia, displayed gene enrichment of metabolic processes in their genomes. Leafhoppers with bothSulciaand its ancient partner,Nasuia, showed genomic enrichment in genes related to microbial population regulation and immune responses. Finally, horizontally transferred genes (HTGs) associated with symbiont support ofSulciaandNasuiaare only observed in leafhoppers that maintain symbionts. In contrast, HTGs involved in non‐symbiotic functions are conserved across all species. The high‐quality ALF genome provides deep insights into how host ecology and symbioses shape genome evolution and a wealth of genetic resources for pest control targets.

     
    more » « less
  3. Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiontBuchnerais confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic;Buchneratiter varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing inBuchneratiter. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and thatBuchneragene expression changes in response. By comparing hosts with low and highBuchneratiter, we found that aphids andBuchneraoppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. SpecificBuchnerafunctions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic “tug-of-war.”

     
    more » « less
  4. Abstract

    Symbiosis often occurs between partners with distinct life history characteristics and dispersal mechanisms. Many bacterial symbionts have genomes comprising multiple replicons with distinct rates of evolution and horizontal transmission. Such differences might drive differences in population structure between hosts and symbionts and among the elements of the divided genomes of bacterial symbionts. These differences might, in turn, shape the evolution of symbiotic interactions and bacterial evolution. Here we use whole genome resequencing of a hierarchically structured sample of 191 strains ofSinorhizobium meliloticollected from 21 locations in southern Europe to characterize population structures of this bacterial symbiont, which forms a root nodule symbiosis with the host plantMedicago truncatula.S. melilotigenomes showed high local (within‐site) variation and little isolation by distance. This was particularly true for the two symbiosis elements, pSymA and pSymB, which have population structures that are similar to each other, but distinct from both the bacterial chromosome and the host plant. Given limited recombination on the chromosome, compared to the symbiosis elements, distinct population structures may result from differences in effective gene flow. Alternatively, positive or purifying selection, with little recombination, may explain distinct geographical patterns at the chromosome. Discordant population structure between hosts and symbionts indicates that geographically and genetically distinct host populations in different parts of the range might interact with genetically similar symbionts, potentially minimizing local specialization.

     
    more » « less
  5. Abstract

    In the legume‐rhizobia mutualism, the benefit each partner derives from the other depends on the genetic identity of both host and rhizobial symbiont. To gain insight into the extent of genome × genome interactions on hosts at the molecular level and to identify potential mechanisms responsible for the variation, we examined host gene expression within nodules (the plant organ where the symbiosis occurs) of four genotypes ofMedicago truncatulagrown with eitherEnsifer melilotiorE. medicaesymbionts. These host × symbiont combinations show significant variation in nodule and biomass phenotypes. Likewise, combinations differ in their transcriptomes: host, symbiont and host × symbiont affected the expression of 70%, 27% and 21%, respectively, of the approximately 27,000 host genes expressed in nodules. Genes with the highest levels of expression often varied between hosts and/or symbiont strain and include leghemoglobins that modulate oxygen availability and hundreds of Nodule Cysteine‐Rich (NCR) peptides involved in symbiont differentiation and viability in nodules. Genes with host × symbiont‐dependent expression were enriched for functions related to resource exchange between partners (sulphate/iron/amino acid transport and dicarboxylate/amino acid synthesis). These enrichments suggest mechanisms for host control of the currencies of the mutualism. The transcriptome ofM. truncatulaaccessionHM101 (A17), the reference genome used for most molecular research, was less affected by symbiont identity than the other hosts. These findings underscore the importance of assessing the molecular basis of variation in ecologically important traits, particularly those involved in biotic interactions, in multiple genetic contexts.

     
    more » « less