skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Adaptive foraging of leaf-cutter ants to spatiotemporal changes in resource availability in Neotropical savannas: Adaptive foraging in leaf-cutter ants
NSF-PAR ID:
10080218
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecological Entomology
Volume:
44
Issue:
2
ISSN:
0307-6946
Page Range / eLocation ID:
p. 227-238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although ants are lauded for their strength, little is known about the limits of their load carrying abilities. We determined the maximal load carrying capacity of leaf-cutter ants by incrementally adding mass to the leaves they carried. Maximal load carrying ability scaled isometrically with body size, indicating that larger ants had the capacity to lift the same proportion of their body mass as smaller ants (8.78 * body mass). However, larger ants were captured carrying leaf fragments that represented a lower proportion of their body mass compared to their smaller counterparts. Therefore, when selecting leaves, larger ants retained a higher proportion of their load carrying capacity in reserve. This suggests that either larger ants require greater power reserves to overcome challenges they encounter along the trail, or leaf-cutter ants do not select loads that maximize the overall leaf transport rate of the colony. 
    more » « less
  2. null (Ed.)
    Abstract Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO 3 ) 2 ] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior . Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized. 
    more » « less
  3. Cavanaugh, Colleen M. (Ed.)
    ABSTRACT Many fungus-growing ants engage in a defensive symbiosis with antibiotic-producing ectosymbiotic bacteria in the genus Pseudonocardia , which help protect the ants’ fungal mutualist from a specialized mycoparasite, Escovopsis . Here, using germfree ant rearing and experimental pathogen infection treatments, we evaluate if Acromyrmex ants derive higher immunity to the entomopathogenic fungus Metarhizium anisopliae from their Pseudonocardia symbionts. We further examine the ecological dynamics and defensive capacities of Pseudonocardia against M. anisopliae across seven different Acromyrmex species by controlling Pseudonocardia acquisition using ant-nonnative Pseudonocardia switches, in vitro challenges, and in situ mass spectrometry imaging (MSI). We show that Pseudonocardia protects the ants against M. anisopliae across different Acromyrmex species and appears to afford higher protection than metapleural gland (MG) secretions. Although Acromyrmex echinatior ants with nonnative Pseudonocardia symbionts receive protection from M. anisopliae regardless of the strain acquired compared with Pseudonocardia -free conditions, we find significant variation in the degree of protection conferred by different Pseudonocardia strains. Additionally, when ants were reared in Pseudonocardia -free conditions, some species exhibit more susceptibility to M. anisopliae than others, indicating that some ant species depend more on defensive symbionts than others. In vitro challenge experiments indicate that Pseudonocardia reduces Metarhizium conidiospore germination area. Our chemometric analysis using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) reveals that Pseudonocardia -carrying ants produce more chemical signals than Pseudonocardia -free treatments, indicating that Pseudonocardia produces bioactive metabolites on the Acromyrmex cuticle. Our results indicate that Pseudonocardia can serve as a dual-purpose defensive symbiont, conferring increased immunity for both the obligate fungal mutualist and the ants themselves. IMPORTANCE In some plants and animals, beneficial microbes mediate host immune response against pathogens, including by serving as defensive symbionts that produce antimicrobial compounds. Defensive symbionts are known in several insects, including some leaf-cutter ants where antifungal-producing Actinobacteria help protect the fungal mutualist of the ants from specialized mycoparasites. In many defensive symbioses, the extent and specificity of defensive benefits received by the host are poorly understood. Here, using “aposymbiotic” rearing, symbiont switching experiments, and imaging mass spectrometry, we explore the ecological and chemical dynamics of the model defensive symbiosis between Acromyrmex ants and their defensive symbiotic bacterium Pseudonocardia . We show that the defensive symbiont not only protects the fungal crop of Acromyrmex but also provides protection from fungal pathogens that infect the ant workers themselves. Furthermore, we reveal that the increased immunity to pathogen infection differs among strains of defensive symbionts and that the degree of reliance on a defensive symbiont for protection varies across congeneric ant species. Taken together, our results suggest that Acromyrmex -associated Pseudonocardia have evolved broad antimicrobial defenses that promote strong immunity to diverse fungal pathogens within the ancient fungus-growing ant-microbe symbiosis. 
    more » « less
  4. Abstract

    Leaf‐cutter ants are a prominent feature in Neotropical ecosystems, but a comprehensive assessment of their effects on ecosystem functions is lacking. We reviewed the literature and used our own recent findings to identify knowledge gaps and develop a framework to quantify the effects of leaf‐cutter ants on ecosystem processes.

    Leaf‐cutter ants disturb the soil structure during nest excavation changing soil aeration and temperature. They mix relatively nutrient‐poor soil from deeper layers with the upper organic‐rich layers increasing the heterogeneity of carbon and nutrients within nest soils.

    Leaf‐cutter ants account for about 25% of all herbivory in Neotropical forest ecosystems, moving 10%–15% of leaves in their foraging range to their nests. Fungal symbionts transform the fresh, nutrient‐rich vegetative material to produce hyphal nodules to feed the ants. Organic material from roots and arbuscular mycorrhizal fungi enhances carbon and nutrient turnover in nest soils and creates biogeochemical hot spots. Breakdown of organic matter, microbial and ant respiration, and nest waste material decomposition result in increased CO2, CH4,and N2O production, but the build‐up of gases and heat within the nest is mitigated by the tunnel network ventilation system. Nest ventilation dynamics are challenging to measure without bias, and improved sensor systems would likely solve this problem.

    Canopy gaps above leaf‐cutter ant nests change the light, wind and temperature regimes, which affects ecosystem processes. Nests differ in density and size depending on colony age, forest type and disturbance level and change over time resulting in spatial and temporal changes of ecosystem processes. These characteristics remain a challenge to evaluate rapidly and non‐destructively.

    Addressing the knowledge gaps identified in this synthesis will bring insights into physical and biological processes driving biogeochemical cycles at the nest and ecosystem scale and will improve our understanding of ecosystem biogeochemical heterogeneity and larger scale ecological phenomena.

    Aplain language summaryis available for this article.

     
    more » « less