Abstract Photothermal CO2reduction is one of the most promising routes to efficiently utilize solar energy for fuel production at high rates. However, this reaction is currently limited by underdeveloped catalysts with low photothermal conversion efficiency, insufficient exposure of active sites, low active material loading, and high material cost. Herein, we report a potassium‐modified carbon‐supported cobalt (K+−Co−C) catalyst mimicking the structure of a lotus pod that addresses these challenges. As a result of the designed lotus‐pod structure which features an efficient photothermal C substrate with hierarchical pores, an intimate Co/C interface with covalent bonding, and exposed Co catalytic sites with optimized CO binding strength, the K+−Co−C catalyst shows a record‐high photothermal CO2hydrogenation rate of 758 mmol gcat−1 h−1(2871 mmol gCo−1 h−1) with a 99.8 % selectivity for CO, three orders of magnitude higher than typical photochemical CO2reduction reactions. We further demonstrate with this catalyst effective CO2conversion under natural sunlight one hour before sunset during the winter season, putting forward an important step towards practical solar fuel production. 
                        more » 
                        « less   
                    
                            
                            Templating and Catalyzing [2+2] Photocycloaddition in Solution Using a Dynamic G‐Quadruplex
                        
                    
    
            Abstract We describe a templating/covalent capture strategy that enables photochemical formation of 8 cyclobutanes in one noncovalent assembly. This process was characterized by experiment and quantum mechanical/molecular mechanics (ONIOM) calculations. Thus, KI and 16 units of 5′‐cinnamate guanosine form a G‐quadruplex where C=C π bonds in neighboring G4‐quartets are separated by 3.3 Å, enabling [2+2] photocycloaddition in solution. This reaction is high‐yielding (>90 %), regio‐ and diastereoselective. Since all components are in dynamic equilibrium this photocycloaddition is catalytic in K+. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1751568
- PAR ID:
- 10080219
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 57
- Issue:
- 52
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 17146-17150
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The preparation of 0.58 Li2S + 0.315 SiS2+ 0.105 LiPO3glass, and the impacts of polysulfide and P1Pdefect structure impurities on the glass transition temperature (Tg), crystallization temperature (Tc), working range (ΔT≡ Tc‐ Tg), fragility index, and the Raman spectra were evaluated using statistical analysis. In this study, 33 samples of this glass composition were synthesized through melt‐quenching. Thermal analysis was conducted to determine the glass transition temperature, crystallization temperature, working range, and fragility index through differential scanning calorimetry. The quantity of the impurities described above was determined through Raman spectroscopy peak analysis. Elemental sulfur was doped into a glass to quantify the wt% sulfur content in the glasses. Linear regression analysis was conducted to determine the impact of polysulfide impurities and P1Pdefect impurities on the thermal properties. Polysulfide impurities were found to decrease theTgat rate of nearly 12°C per 1 wt% increase in sulfur concentration. The sulfur concentration does not have a statistically significant impact on the other properties (α = 0.05). The P1Pdefect structure appears to decrease the resistance to crystallization of the glass by measurably decreasing the working range of the glasses, but further study is necessary to fully quantify and determine this.more » « less
- 
            Abstract A stable lean‐electrolyte operating lithium–sulfur (Li–S) battery based on a cathode of Li2S in situ electrocatalytically deposited from L2S8catholyte onto a support of metallic molybdenum disulfide (1T‐MoS2) on carbon cloth (CC) is created. The 1T‐MoS2significantly accelerates the conversion Li2S8catholyte to Li2S, chemically adsorbs lithium polysulfide (LiPSs) from solution, and suppresses crossover of the LiPSs to the anode. These experimental findings are explained by density functional theory calculations that show that 1T‐MoS2gives rise to strong adsorption of polysulfides on its surface and is electrocatalytic for the targeted reversible Li–S conversion reactions. The CC/1T‐MoS2electrode in a Li–S battery delivers an initial capacity of 1238 mAh g−1, with a low capacity fade of only 0.051% per cycle over 500 cycles at 0.5C. Even at a high sulfur loading (4.4 mg cm−2) and low electrolyte/S (E/S) ratio of 3.7 µL mg−1, the battery achieves an initial reversible capacity of 1176 mA h g−1at 0.5C, with 87% capacity retention after 160 cycles. The post 500 cycles Li metal opposing 1T‐MoS2is substantially smoother than the Li opposing CC, with XPS supporting the role of 1T‐MoS2in inhibiting LiPSs crossover.more » « less
- 
            Abstract Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.more » « less
- 
            Tailorable Multi‐Modular Pore‐Space‐Partitioned Vanadium Metal‐Organic Frameworks for Gas SeparationAbstract Currently, few porous vanadium metal‐organic frameworks (V‐MOFs) are known and even fewer are obtainable as single crystals, resulting in limited information on their structures and properties. Here this work demonstrates remarkable promise of V‐MOFs by presenting an extensible family of V‐MOFs with tailorable pore geometry and properties. The synthesis leverages inter‐modular synergy on a tri‐modular pore‐partitioned platform. New V‐MOFs show a broad range of structural features and sorption properties suitable for gas storage and separation applications for C2H2/CO2, C2H6/C2H4, and C3H8/C3H6. Thec/aratio of the hexagonal cell, a measure of pore shape, is tunable from 0.612 to 1.258. Other tunable properties include pore size from 5.0 to 10.9 Å and surface area from 820 to 2964 m2g−1. With C2H2/CO2selectivity from 3.3 to 11 and high uptake capacity for C2H2from 65.2 to 182 cm3g−1(298K, 1 bar), an efficient separation is confirmed by breakthrough experiments. The near‐record high uptake for C2H6(166.8 cm3g−1) contributes to the promise for C2H6‐selective separation of C2H6/C2H4. The multi‐module pore expansion enables transition from C3H6‐selective to more desirable C3H8‐selective separation with extraordinarily high C3H8uptake (254.9 cm3g−1) and high separation potential (1.25 mmol g−1) for C3H8/C3H6(50:50 v/v) mixture.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
