skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Overexpression of striatal D2 receptors reduces motivation thereby decreasing food anticipatory activity
Abstract Dopamine has been implicated in circadian timing underlying the food entrainable oscillator (FEO) circuitry and overexpression of the dopamine D2 receptor (D2R) in the striatum has been reported to reduce motivation to obtain food rewards in operant tasks. In the present study, we explored both of these mechanisms by examining food anticipatory activity (FAA) in dopamine D2 receptor‐overexpressing (D2R‐OE) mice under various durations of food availability. First, we noted that at baseline, there were no differences between D2R‐OEmice and their littermates in activity level, food intake, and body weight or in circadian activity. Under conditions of very restricted food availability (4 or 6 hr), both genotypes displayedFAA. In contrast, under 8‐hr food availability, control mice showedFAA, but D2R‐OEmice did not. Normalization of D2R by administration of doxycycline, a tetracycline analogue, rescuedFAAunder 8‐hr restricted food. We next tested for circadian regulation ofFAA. When given ad libitum access to food, neither D2R‐OEnor controls were active during the daytime. However, after an interval of food restriction, all mice showed elevated locomotor activity at the time of previous food availability in the day, indicating circadian timing of anticipatory activity. In summary, motivation is reduced in D2R‐OEmice but circadian timing behavior is not affected. We conclude that an increase in striatal D2R reducesFAAby modulating motivation and not by acting on a clock mechanism.  more » « less
Award ID(s):
1749500
PAR ID:
10080227
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
European Journal of Neuroscience
Volume:
51
Issue:
1
ISSN:
0953-816X
Page Range / eLocation ID:
p. 71-81
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Emerging evidence has highlighted that the gut microbiota plays a critical role in the regulation of various aspects of mammalian physiology and behavior, including circadian rhythms. Circadian rhythms are fundamental behavioral and physiological processes that are governed by circadian pacemakers in the brain. Since mice are nocturnal, voluntary wheel running activity mostly occurs at night. This nocturnal wheel-running activity is driven by the primary circadian pacemaker located in the suprachiasmatic nucleus (SCN). Food anticipatory activity (FAA) is the increased bout of locomotor activity that precedes the scheduled short duration of a daily meal. FAA is controlled by the food-entrainable oscillator (FEO) located outside of the SCN. Several studies have shown that germ-free mice and mice with gut microbiota depletion altered those circadian behavioral rhythms. Therefore, this study was designed to test if the gut microbiota is involved in voluntary wheel running activity and FAA expression. To deplete gut microbiota, C57BL/6J wildtype mice were administered an antibiotic cocktail via their drinking water throughout the experiment. The effect of antibiotic cocktail treatment on wheel running activity rhythm in both female and male mice was not detectable with the sample size in our current study. Then mice were exposed to timed restricted feeding during the day. Both female and male mice treated with antibiotics exhibited normal FAA which was comparable with the FAA observed in the control group. Those results suggest that gut microbiota depletion has minimum effect on both circadian behavioral rhythms controlled by the SCN and FEO respectively. Our result contradicts recently published studies that reported significantly higher FAA levels in germ-free mice compared to their control counterparts and gut microbiota depletion significantly reduced voluntary activity by 50%. 
    more » « less
  2. Abstract Bone modeling and remodeling are aerobic processes that entail relatively high oxygen demands. Long bones receive oxygenated blood from nutrient arteries, epiphyseal‐metaphyseal arteries, and periosteal arteries, with the nutrient artery supplying the bulk of total blood volume in mammals (~ 50–70%). Estimates of blood flow into these bones can be made from the dimensions of the nutrient canal, through which nutrient arteries pass. Unfortunately, measuring these canal dimensions non‐invasively (i.e. without physical sectioning) is difficult, and thus researchers have relied on more readily visible skeletal proxies. Specifically, the size of the nutrient artery has been estimated from dimensions (e.g. minimum diameters) of the periosteal (external) opening of the nutrient canal. This approach has also been utilized by some comparative morphologists and paleontologists, as the opening of a nutrient canal is present long after the vascular soft tissue has degenerated. The literature on nutrient arteries and canals is sparse, with most studies consisting of anatomical descriptions from surgical proceedings, and only a few investigating the links between nutrient canal morphology and physiology or behavior. The primary objective of this study was to evaluate femur nutrient canal morphology in mice with known physiological and behavioral differences; specifically, mice from an artificial selection experiment for high voluntary wheel‐running behavior. Mice from four replicate high runner (HR) lines are known to differ from four non‐selected control (C) lines in both locomotor and metabolic activity, withHRmice having increased voluntary wheel‐running behavior and maximal aerobic capacity (VO2max) during forced treadmill exercise. Femora from adult mice (average age 7.5 months) of the 11th generation of this selection experiment were μCT‐scanned and three‐dimensional virtual reconstructions of nutrient canals were measured for minimum cross‐sectional area as a skeletal proxy of blood flow. Gross observations revealed that nutrient canals varied far more in number and shape than prior descriptions would indicate, regardless of sex or genetic background (i.e.HRvs. C lines). Canals adopted non‐linear shapes and paths as they traversed from the periosteal to endosteal borders through the cortex, occasionally even branching within the cortical bone. Additionally, mice from bothHRand C lines averaged more than four nutrient canals per femur, in contrast to the one to two nutrient canals described for femora from rats, pigs, and humans in prior literature. Mice fromHRlines had significantly larger total nutrient canal area than C lines, which was the result not of an increase in the number of nutrient canals, but rather an increase in their average cross‐section size. This study demonstrates that mice with an evolutionary history of increased locomotor activity and maximal aerobic metabolic rate have a concomitant increase in the size of their femoral nutrient canals. Although the primary determinant of nutrient canal size is currently not well understood, the present results bolster use of nutrient canal size as a skeletal indicator of aerobically supported levels of physical activity in comparative studies. 
    more » « less
  3. ObjectiveTo elucidate the role of decorin, a small leucine‐rich proteoglycan, in the degradation of cartilage matrix during the progression of post‐traumatic osteoarthritis (OA). MethodsThree‐month–old decorin‐null (Dcn−/−) and inducible decorin‐knockout (DcniKO) mice were subjected to surgical destabilization of the medial meniscus (DMM) to induce post‐traumaticOA. TheOAphenotype that resulted was evaluated by assessing joint morphology and sulfated glycosaminoglycan (sGAG) staining via histological analysis (n = 6 mice per group), surface collagen fibril nanostructure via scanning electron microscopy (n = 4 mice per group), tissue modulus via atomic force microscopy–nanoindentation (n = 5 or more mice per group) and subchondral bone structure via micro–computed tomography (n = 5 mice per group). Femoral head cartilage explants from wild‐type and Dcn−/−mice were stimulated with the inflammatory cytokine interleukin‐1β (IL‐1β) in vitro (n = 6 mice per group). The resulting chondrocyte response toIL‐1β and release ofsGAGs were quantified. ResultsIn both Dcn−/−and DcniKOmice, the absence of decorin resulted in acceleratedsGAGloss and formation of highly aligned collagen fibrils on the cartilage surface relative to the control (P< 0.05). Also, Dcn−/−mice developed more salient osteophytes, illustrating more severeOA. In cartilage explants treated withIL‐1β, loss of decorin did not alter the expression of either anabolic or catabolic genes. However, a greater proportion ofsGAGs was released to the media from Dcn−/−mouse explants, in both live and devitalized conditions (P< 0.05). ConclusionIn post‐traumaticOA, decorin delays the loss of fragmented aggrecan and fibrillation of cartilage surface, and thus, plays a protective role in ameliorating cartilage degeneration. 
    more » « less
  4. Abstract BACKGROUNDHaematococcus pluvialis(Hp), a freshwater chlorophyte microalga, is a major natural source of astaxanthin (ASX), a potent antioxidant with anti‐inflammatory, anticarcinogenic and muscle pigmentation properties. However,ASXbioavailability is limited by the rigid cyst wall and, although cell wall rupture improves bioavailability, the free form is unstable under high temperatures,pHextremes, light or oxygen. Encapsulation techniques improveASXstability, making it suitable for functional foods and aquaculture, especially in salmonid feeds where natural pigments are preferred. The present study evaluates the stability of weakenedHp(Hpw) biomass encapsulated in alginate (ALG) via ionic gelation. RESULTSEncapsulation utilizingALGachieved high efficiency (97 ± 2.63%) and loading capacity (32 ± 0.90%), confirming its suitability as a wall material.ALG‐Hpwhydrogels displayed significant color intensity, enhancing potential feed or food hues. Low bulk density (0.59 ± 0.01 g cm−3), moisture content (11.97 ± 0.20%) and water activity (0.28 ± 0.00) suggest minimized oxidation processes. Hydrogels measured 1.30 ± 0.06 mm with a uniform sphericity factor of 0.058 ± 0.03. Confocal laser scanning microscopy confirmed uniformHpwdistribution andscanning electron microscopyrevealed fissure‐free surfaces, ensuring minimal permeability. DPPH (i.e. 2,2‐diphenyl‐1‐picrylhydrazyl) scavenging activity was similar betweenHpwextract (38.32 ± 2.30% to 96.32 ± 0.88%) andALG‐Hpwhydrogels (33.20 ± 1.55% to 93.30 ± 0.44%).ALGIncreasedHpwdecomposition temperature by 40.97 °C. Encapsulation ofHpwinALGsignificantly enhanced the bioaccessibility ofASX. TheALG‐based encapsulation effectively preservedASXstability, retaining over 90% of its content under storage conditions. CONCLUSIONALGis a suitable biopolymer for encapsulatingHpw, preserving antioxidant activity, and enhancing thermal properties, making it valuable for broader applications. © 2025 Society of Chemical Industry. 
    more » « less
  5. Abstract ARGONAUTES are the central effector proteins ofRNAsilencing which bind target transcripts in a smallRNA‐guided manner.Arabidopsis thalianahas 10ARGONAUTE(AGO) genes, with specialized roles inRNA‐directedDNAmethylation, post‐transcriptional gene silencing, and antiviral defense. To better understand specialization amongAGOgenes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters ofAGO1,AGO10, andAGO7using yeast 1‐hybrid assays. A ranked list of candidateDNA‐bindingTFs revealed binding of theAGO7promoter by a number of proteins in two families: the miR156‐regulatedSPLfamily and the miR319‐regulatedTCPfamily, both of which have roles in developmental timing and leaf morphology. Possible functions forSPLandTCPbinding are unclear: we showed that these binding sites are not required for the polar expression pattern ofAGO7, nor for the function ofAGO7in leaf shape. NormalAGO7transcription levels and function appear to depend instead on an adjacent 124‐bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conservedAGO7‐triggeredTAS3pathway functions in timing and polarity. 
    more » « less