skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 3D Printing of Flexible Liquid Sensor Based on Swelling Behavior of Hydrogel with Carbon Nanotubes
Abstract Flexible sensors with accurate detection of environmental stimuli (e.g., humidity and chemical substances) have drawn increasing research interests in biomedical engineering and environmental science. However, most work is focused on isotropic sensing of liquid occurrence due to the limitation of material development, sensor design, and fabrication capability. 3D printing is used to build multifunctional flexible liquid sensors with multimaterials enabling anisotropic detection of microliquid droplets, and described herein. Electrical conductive composite hydrogels capable of detecting chemical liquid are developed with poly (ethylene diacrylate) (PEGDA) and multiwalled carbon nanotube (MWCNT). Due to the absorption of the liquid droplet and related swelling behavior, the resistance of PEGDA/MWCNT composite hydrogel increases dramatically, while the resistance of pure PEGDA hydrogel decreases significantly. Based on the two composite hydrogels and the related 3D printing method, a mesh‐shaped liquid sensor that can effectively identify the position and volume of liquid leakage in a short time is developed. Furthermore, a three‐layered liquid sensor to enable bidirectional monitor and detection of the liquid leakage in two different sides is demonstrated. The 3D‐printed liquid sensor offers a distinctive perspective on the potential applications in various fields for detection of liquid leakage in accurate position and direction.  more » « less
Award ID(s):
1663663 1151191
PAR ID:
10080293
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
4
Issue:
2
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sensitive and flexible pressure sensors have invoked considerable interest for a broad range of applications in tactile sensing, physiological sensing, and flexible electronics. The barrier between high sensitivity and low fabrication cost needs to be addressed to commercialize such flexible pressure sensors. A low-cost sacrificial template-assisted method for the capacitive sensor has been reported herein, utilizing a porous Polydimethylsiloxane (PDMS) polymer and a multiwalled carbon nanotube (MWCNT) composite-based dielectric layer. The sensor shows high sensitivity of 2.42 kPa−1 along with a low limit of detection of 1.46 Pa. The high sensitivity originates from adding MWCNT to PDMS, increasing the composite polymer’s dielectric constant. Besides this, the pressure sensor shows excellent stability at a cyclic loading of 9000 cycles, proving its reliability for long-lasting application in tactile and physiological sensing. The high sensitivity of the sensor is suitable for the detection of small deformations such as pulse waveforms as well as tactile pressure sensing. In addition, the paper demonstrates a simultaneous contact and non-contact sensing capability suitable for dual sensing (pressure and proximity) with a single data readout system. The dual-mode sensing capability may open opportunities for realizing compact systems in robotics, gesture control, contactless applications, and many more. The practicality of the sensor was shown in applications such as tactile sensing, Morse code generator, proximity sensing, and pulse wave sensing. 
    more » « less
  2. Abstract Smart hydrogels are a promising candidate for the development of next‐generation soft materials due to their stimuli‐responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness‐dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation. 
    more » « less
  3. Abstract Embedded ink writing (EIW) is an emerging 3D printing technique that fabricates complex 3D structures from various biomaterial inks but is limited to a printing speed of ∼10 mm s−1due to suboptimal rheological properties of particulate‐dominated yield‐stress fluids when used as liquid baths. In this work, a particle‐hydrogel interactive system to design advanced baths with enhanced yield stress and extended thixotropic response time for realizing high‐speed EIW is developed. In this system, the interactions between particle additive and three representative polymeric hydrogels enable the resulting nanocomposites to demonstrate different rheological behaviors. Accordingly, the interaction models for the nanocomposites are established, which are subsequently validated by macroscale rheological measurements and advanced microstructure characterization techniques. Filament formation mechanisms in the particle‐hydrogel interactive baths are comprehensively investigated at high printing speeds. To demonstrate the effectiveness of the proposed high‐speed EIW method, an anatomic‐size human kidney construct is successfully printed at 110 mm s−1, which only takes ∼4 h. This work breaks the printing speed barrier in current EIW and propels the maximum printing speed by at least 10 times, providing an efficient and promising solution for organ reconstruction in the future. 
    more » « less
  4. Conducting polymer hydrogels combine electrical conductivity and tunable water content, rendering them strong candidates for a range of applications including biosensors, cell culture platforms, and energy storage devices. However, these hydrogels are mechanically brittle and prone to damage, prohibiting their use in emerging applications involving dynamic movement and large mechanical deformation. Here, we demonstrate that applying the concept of architecture to conducting polymer hydrogels can circumvent these impediments. A stereolithography 3D printing method is developed to successfully fabricate such hydrogels in complex lattice structures. The resulting hydrogels exhibit elastic compressibility, high fracture strain, enhanced cycling stability, and damage-tolerant properties despite their chemical composition being identical to their brittle, solid counterparts. Furthermore, concentrating the deformation to the 3D geometry, rather than polymer microstructure, effectively decouples the mechanical and electrical properties of the hydrogel lattices from their intrinsic properties associated with their chemical composition. The confluence of these new physical properties for conducting polymer hydrogels opens broad opportunities for a myriad of dynamic applications. 
    more » « less
  5. Abstract There are advantages to polymer/nanoparticle composite‐based volatile organic compounds (VOCs) sensors, such as high chemical and physical stability, operability under extreme conditions, flexible use in manufacturing, and low cost. Nevertheless, their lower limit of detection due to thickness‐dependent diffusion has constrained their application. Inspired by the metaxylem in vascular plants and its vertical conduits and horizontal pits that enable efficient transpiration, a polymer/nanoparticle composite‐based sensor is fabricated with a controllable, spontaneously formed, hollow core for inline VOCs transportation, and porous microstructure for radial direction diffusion. The hollow core is surrounded by an inner porous layer (thermoplastic polyurethane (TPU)), a middle sensing layer (TPU/graphene nanoplatelets/multiwalled carbon nanotubes), and an outer mechanically durable layer (TPU). This multilayered structure shows a 600% higher response rate compared to a single‐layered composite fiber sensor, with a low limit of detection (e.g., ≈15 ppm for xylene) and high selectivity based on the Flory–Huggins interaction parameter. This flexible and stretchable sensor also demonstrates a dual parameter sensing capability from VOC concentrations and uniaxial strain deformation. Via a one‐step fiber spinning procedure, this self‐induced hollow fiber offers a unique method of microstructural design, which enables the detection of low‐concentration VOCs by polymer/nanoparticle‐based sensors. 
    more » « less