skip to main content


Title: Statewide Coalition: Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED) Results from Year One
National data indicate that initial mathematics course placement in college is a strong predictor of persistence to degree in engineering, with students placed in calculus persisting at nearly twice the rate of those placed below calculus. Within the state of South Carolina, approximately 95% of engineering-intending students who initially place below calculus are from in-state. The “Statewide Coalition: Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED),” a Design and Development Launch Pilot funded under the National Science Foundation INCLUDES program, is a coalition of secondary districts and post-secondary institutions throughout South Carolina, joining together to address the systemic issue of mathematical preparation for engineering-intending students. First year results include an analysis of system-wide data to identify prevalent educational pathways within the state, and the mathematical milestones along those pathways taken by engineering-intending students. Using individual data for all 21,656 first-year students in engineering-related fields enrolled in a public post-secondary institution in the state, we identified specific pathways with high rates of placement in or above calculus, pathways with balanced rates of placement in/below calculus, pathways with high rates of placement below calculus, and ‘missing’ pathways, defined as those which produce disproportionately few engineering-intending students [5]. For example, rates of placement in or above calculus among engineering majors ranged from below 17% in eight counties of origin to nearly 100% in four counties of origin. First-year results also included analysis of qualitative data from focus groups conducted at key points along each pathway category to identify factors that do not readily appear in institutional data (e.g., impact of guidance counselor recommendations in selection of last high school math course taken). Broad themes emerging from the focus groups provided additional insight into potential interventions at multiple points along educational pathways. Focus group data are contributing to the development of a survey to be administered in Year 2 to all post-secondary engineering majors statewide, with the goal of creating structural equation models of the factors leading to placement at or below the calculus level upon entry into an engineering major. These models will then allow us to design targeted interventions at points of maximal potential impact.  more » « less
Award ID(s):
1744497
NSF-PAR ID:
10080470
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
ASEE annual conference & exposition proceedings
ISSN:
2153-5868
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Statewide Coalition Supporting Underrepresented Populations in Precalculus through Organizational Redesign Toward Engineering Diversity (SC:SUPPORTED), a Design and Development Launch Pilot funded under the National Science Foundation INCLUDES program, is a coalition of secondary districts and postsecondary institutions throughout South Carolina that have joined together to address the systemic issue of mathematics preparation and placement for students pursuing or intending to pursue engineering degrees. In Year One of the project, we used individual data for all 21,656 first-year STEM-intending students enrolled in a public two- or four-year postsecondary institution with ABET-accredited engineering programs in the state to identify specific pathways with high rates of placement in or above calculus, pathways with balanced rates of placement in/below calculus, pathways with high rates of placement below calculus, and “missing” pathways: ones that produced disproportionately few engineering-intending students. From the pathways analysis we identified target locations for focus groups to identify factors that do not readily appear in institutional data, such as the impact of guidance counselor recommendations in a student’s selection of their last high school math course taken. Broad themes emerging from the focus groups provided additional insight into potential interventions at multiple points along educational pathways. These themes also contributed to both the development of a survey for statewide administration and a follow-up study to develop profiles of school district decision-making with direct and indirect effects on mathematics preparation and major selection of students from that district. As we conclude Year Two of our launch pilot, in this paper we integrate a subset of results from different aspects of the project to address both quantitative impact and qualitative context of the roles that poverty and guidance play in gaining access to engineering in South Carolina. 
    more » « less
  2. National data indicate that initial mathematics course placement in college is a strong predictor of persistence to degree in engineering, with students placed in calculus persisting at nearly twice the rate of those placed below calculus. Within the state of South Carolina, approximately 95% of engineering-intending students who initially place below calculus are from in-state. In order to make systemic change, we are first analyzing system-wide data to identify prevalent educational pathways within the state, and the mathematical milestones along those pathways taken by students in engineering and engineering-related fields. This paper reports preliminary analysis of that data to understand trends in major selection and mathematics preparation within the state. 
    more » « less
  3. Improving retention rates of engineering students in higher education has been a nationwide goal aimed at expanding and diversifying the engineering workforce. Initial mathematics placement in institutions is a major predictor for attrition, with 52% of students from two-year institutions starting below calculus as opposed to 14.4% of students from four-year institutions starting below calculus. Consequently, national data shows that the attrition rate for engineering students at two-year institutions is 69% while the attrition rate for engineering students at four-year institutions is 37%. As the prevalence of students taking an indirect path towards completing an engineering degree increases, the examination of those students’ pathways towards an engineering degree is necessary. In the SC:SUPPORTED project, we conducted focus groups with students from two-year and four-year institutions across the state of South Carolina. Themes related to academic influence, social influence and family influence emerged from analysis of the focus group data. Within family influences, which are the ways family members affect a student’s persistence in education, choice of major, and choice of institution, there were differences between students attending two-year institutions and those attending four-year institutions. Family members include parents, siblings, other relatives, and also “fictive” family. The goal of this paper is to discuss the factors that influence why students choose engineering and choose to attend a two-year or four-year institution. 
    more » « less
  4. Improving retention rates of engineering students in higher education has been a nationwide goal aimed at expanding and diversifying the engineering workforce. Initial mathematics placement in institutions is a major predictor for attrition, with 52% of students from two-year institutions starting below calculus as opposed to 14.4% of students from four-year institutions starting below calculus. Consequently, national data shows that the attrition rate for engineering students at two-year institutions is 69% while the attrition rate for engineering students at four-year institutions is 37%. As the prevalence of students taking an indirect path towards completing an engineering degree increases, the examination of those students’ pathways towards an engineering degree is necessary. In the SC:SUPPORTED project, we conducted focus groups with students from two-year and four-year institutions across the state of South Carolina. Themes related to academic influence, social influence and family influence emerged from analysis of the focus group data. Within family influences, which are the ways family members affect a student’s persistence in education, choice of major, and choice of institution, there were differences between students attending two-year institutions and those attending four-year institutions. Family members include parents, siblings, other relatives, and also “fictive” family. The goal of this paper is to discuss the factors that influence why students choose engineering and choose to attend a two-year or four-year institution. 
    more » « less
  5. To remain competitive in the global economy, the United States needs skilled technical workers in occupations requiring a high level of domain-specific technical knowledge to meet the country’s anticipated shortage of 5 million technically-credentialed workers. The changing demographics of the country are of increasing importance to addressing this workforce challenge. According to federal data, half the students earning a certificate in 2016-17 received credentials from community colleges where the percent enrollment of Latinx (a gender-neutral term referencing Latin American cultural or racial identity) students (56%) exceeds that of other post-secondary sectors. If this enrollment rate persists, then by 2050 over 25% of all students enrolled in higher education will be Latinx. Hispanic Serving Institutions (HSIs) are essential points of access as they enroll 64% of all Latinx college students, and nearly 50% of all HSIs are 2-year institutions. Census estimates predict Latinxs are the fastest-growing segment reaching 30% of the U.S. population while becoming the youngest group comprising 33.5% of those under 18 years by 2060. The demand for skilled workers in STEM fields will be met when workers reflect the diversity of the population, therefore more students—of all ages and backgrounds—must be brought into community colleges and supported through graduation: a central focus of community colleges everywhere. While Latinx students of color are as likely as white students to major in STEM, their completion numbers drop dramatically: Latinx students often have distinct needs that evolved from a history of discrimination in the educational system. HSI ATE Hub is a three-year collaborative research project funded by the National Science Foundation Advanced Technological Education Program (NSF ATE) being implemented by Florence Darlington Technical College and Science Foundation Arizona Center for STEM at Arizona State University to address the imperative that 2-year Hispanic Serving Institutions (HSIs) develop and improve engineering technology and related technician education programs in a way that is culturally inclusive. Interventions focus on strengthening grant-writing skills among CC HSIs to fund advancements in technician education and connecting 2-year HSIs with resources for faculty development and program improvement. A mixed methods approach will explore the following research questions: 1) What are the unique barriers and challenges for 2-year HSIs related to STEM program development and grant-writing endeavors? 2) How do we build capacity at 2-year HSIs to address these barriers and challenges? 3) How do mentoring efforts/styles need to differ? 4) How do existing ATE resources need to be augmented to better serve 2-year HSIs? 5) How do proposal submission and success rates compare for 2-year HSIs that have gone through the KS STEM planning process but not M-C, through the M-C cohort mentoring process but not KS, and through both interventions? The project will identify HSI-relevant resources, augment existing ATE resources, and create new ones to support 2-year HSI faculty as potential ATE grantees. To address the distinct needs of Latinx students in STEM, resources representing best practices and frameworks for cultural inclusivity, as well as faculty development will be included. Throughout, the community-based tradition of the ATE Program is being fostered with particular emphasis on forming, nurturing, and serving participating 2-year HSIs. This paper will discuss the need, baseline data, and early results for the three-year program, setting the stage for a series of annual papers that report new findings. 
    more » « less