skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Elucidating the Effect of Water-To-Cement Ratio on the Hydration Mechanisms of Cement
Award ID(s):
1661609
PAR ID:
10080540
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
ACS Omega
Volume:
3
Issue:
5
ISSN:
2470-1343
Page Range / eLocation ID:
p. 5092-5105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Limestone calcined clay cement (LC3) is a sustainable alternative to ordinary Portland cement, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance metrics. The inherent compositional heterogeneity in select components of LC3, combined with their convoluted chemical interactions, poses challenges to conventional analytical models when predicting mechanical properties. Although some studies have employed machine learning (ML) to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature selection. Proper feature selection not only refines and simplifies the structure of ML models but also enhances these models’ prediction performance and interpretability. This research harnesses the power of the random forest (RF) model to predict the compressive strength of LC3. Three feature reduction methods—Pearson correlation, SHapley Additive exPlanations, and variable importance—are employed to analyze the influence of LC3 components and mixture design on compressive strength. Practical guidelines for utilizing these methods on cementitious materials are elucidated. Through the rigorous screening of insignificant variables from the database, the RF model conserves computational resources while also producing high-fidelity predictions. Additionally, a feature enhancement method is utilized, consolidating numerous input variables into a singular feature while feeding the RF model with richer information, resulting in a substantial improvement in prediction accuracy. Overall, this study provides a novel pathway to apply ML to LC3, emphasizing the need to tailor ML models to cement chemistry rather than employing them generically. 
    more » « less
  2. Globally, the production of concrete is responsible for 5% to 8% of anthropogenic CO2 emissions. Cement, a primary ingredient in concrete, forms a glue that holds concrete together when combined with water. Cement embodies approximately 90% of the greenhouse gas emissions associated with concrete production, and decarbonization methods focus primarily on cement production. But mitigation strategies can accrue throughout the concrete life cycle. Decarbonization strategies in cement manufacture, use, and disposal can be rapidly implemented to address the global challenge of equitably meeting societal needs and climate goals. This review describes (a) the development of our reliance on cement and concrete and the consequent environmental impacts, (b) pathways to decarbonization throughout the concrete value chain, and (c) alternative resources that can be leveraged to further reduce emissions while meeting global demands. We close by highlighting a research agenda to mitigate the climate damages from our continued dependence on cement. 
    more » « less
  3. null (Ed.)