skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remarkable long-term stability of nanoconfined metal–halide perovskite crystals against degradation and polymorph transitions
Metal–halide perovskites are promising candidates to advance optoelectronic devices but are known to suffer from rapid material degradation. Here we demonstrate that nanoconfinement is an effective strategy for the long-term stabilization of metal–halide perovskite MAPbI 3 crystals against humidity-induced degradation and temperature-induced polymorph transitions. Two-dimensional X-ray diffraction patterns of MAPbI 3 films reveal an unprecedented air-stability of up to 594 days in non-chemically modified, non-passivated MAPbI 3 films deposited on substrates imposing complete 2D confinement on the tens of nanometers length scale. Temperature-dependent X-ray diffraction analysis and optical spectroscopy further reveal the suppression of temperature-dependent phase transitions in nanoconfined MAPbI 3 crystals. Most notably, the high-temperature cubic phase of MAPbI 3 , typically stable at temperatures above 327 K, remains present until a temperature of 170 K when the perovskite crystals are nanoconfined within the 100 nm diameter pores of anodized aluminum oxide templates. Photoluminescence mapping confirms that nanoconfined MAPbI 3 crystals exhibit spatial uniformity on the tens of microns length scale, suggesting that nanoconfinement is an effective strategy for the formation of high-quality, stable MAPbI 3 crystals across large areas.  more » « less
Award ID(s):
1531237
PAR ID:
10080617
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
10
Issue:
17
ISSN:
2040-3364
Page Range / eLocation ID:
8320 to 8328
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cesium methylammonium lead iodide (CsxMA1−xPbI3) nanocrystals were obtained with a wide range of A‐site Cs‐MA compositions by post‐synthetic, room temperature cation exchange between CsPbI3nanocrystals and MAPbI3nanocrystals. The alloyed CsxMA1−xPbI3nanocrystals retain their photoactive perovskite phase with incorporated Cs content,x, as high as 0.74 and the expected composition‐tunable photoluminescence (PL). Excess methylammonium oleate from the reaction mixture in the MAPbI3nanocrystal dispersions was necessary to obtain fast Cs‐MA cation exchange. The phase transformation and degradation kinetics of films of CsxMA1−xPbI3nanocrystals were measured and modeled using an Avrami expression. The transformation kinetics were significantly slower than those of the parent CsPbI3and MAPbI3nanocrystals, with Avrami rate constants,k, at least an order of magnitude smaller. These results affirm that A‐site cation alloying is a promising strategy for stabilizing iodide‐based perovskites. 
    more » « less
  2. Phase transitions in halide perovskites triggered by external stimuli generate significantly different material properties, providing a great opportunity for broad applications. Here, we demonstrate an In-based, charge-ordered (In+/In3+) inorganic halide perovskite with the composition of Cs2In(I)In(III)Cl6 in which a pressure-driven semiconductor-to-metal phase transition exists. The single crystals, synthesized via a solid-state reaction method, crystallize in a distorted perovskite structure with space group I4/m with a = 17.2604(12) Å, c = 11.0113(16) Å if both the strong reflections and superstructures are considered. The supercell was further confirmed by rotation electron diffraction measurement. The pressure-induced semiconductor-to-metal phase transition was demonstrated by high-pressure Raman and absorbance spectroscopies and was consistent with theoretical modeling. This type of charge-ordered inorganic halide perovskite with a pressure-induced semiconductor-to-metal phase transition may inspire a range of potential applications. 
    more » « less
  3. null (Ed.)
    Symmetry-dependent properties such as ferroelectricity are suppressed at room temperature in Pb-free ABO 3 perovskites due to antiferrodistortive dynamics (octahedral rotations/tilts), resulting in the preferential stabilization of centrosymmetric crystals. For this reason, defect engineering (Ca doping, oxygen vacancy, etc. ) has been leveraged to break the symmetry of these crystals by inducing symmetry/structural transitions to modify the local A/B-site environment. This work demonstrates the use of in situ / ex situ photoluminescence spectroscopy to systematically detect symmetry/structural transformations in prototypical ferroelectric ABO 3 perovskites. These baseline optical responses are compared to recently synthesized Ca x Sr 1−x NbO 3 (CSNO) nanocrystals, which undergoes similar ferroelectric/structural phase transitions. Furthermore, the resultant PL response is corroborated with X-ray diffraction (XRD) and absorption spectroscopy (XAS) measurements to confirm the structural changes. This ability to directly monitor the local site symmetry within ABO 3 perovskites via photoluminescence spectroscopy can be used to screen for temperature- and defect-induced ferroelectric transitions. 
    more » « less
  4. Abstract Perovskite optoelectronics are regarded as a disruptive technology, but their susceptibility to environmental degradation and reliance on toxic solvents in traditional processing methods pose significant challenges to their practical implementation. Herein, methylammonium lead iodide (MAPbI3) perovskite films processed via a solvent‐free laser printing technique, that exhibit exceptional stability, are reported. These films withstand extreme conditions, including high doses of X‐ray radiation exceeding 200 Gy, blue laser illumination, 90% relative humidity, and thermal stress up to 80 °C for over 300 min in air. We demonstrate that laser‐printed films maintain their structural integrity and optoelectronic properties even after prolonged exposure to these stressors, significantly surpassing the stability of conventionally processed films. The enhanced stability is attributed to the unique film formation mechanism and resulting defect‐tolerant microstructure. These results underscore the potential of laser printing as a scalable, safe, and sustainable manufacturing route for producing stable perovskite‐based devices with potential applications in diverse fields, ranging from renewable energy to large‐area electronics and space exploration. 
    more » « less
  5. ABSTRACT: Perovskite cobaltites have emerged as archetypes for electrochemical control of materials properties in electrolytegate devices. Voltage-driven redox cycling can be performed between fully oxygenated perovskite and oxygen-vacancy-ordered brownmillerite phases, enabling exceptional modulation of the crystal structure, electronic transport, thermal transport, magnetism, and optical properties. The vast majority of studies, however, have focused heavily on the perovskite and brownmillerite end points. In contrast, here we focus on hysteresis and reversibility across the entire perovskite ↔ brownmillerite topotactic transformation, combining gate-voltage hysteresis loops, minor hysteresis loops, quantitative operando synchrotron X-ray diffraction, and temperature-dependent (magneto)transport, on ion-gel-gated ultrathin (10-unit-cell) epitaxial La0.5Sr0.5CoO3−δ films. Gate-voltage hysteresis loops combined with operando diffraction reveal a wealth of new mechanistic findings, including asymmetric redox kinetics due to differing oxygen diffusivities in the two phases, nonmonotonic transformation rates due to the first-order nature of the transformation, and limits on reversibility due to first-cycle structural degradation. Minor loops additionally enable the first rational design of an optimal gate-voltage cycle. Combining this knowledge, we demonstrate state-of-the-art nonvolatile cycling of electronic and magnetic properties, encompassing >105 transport ON/OFF ratios at room temperature, and reversible metal−insulator−metal and ferromagnet−nonferromagnet−ferromagnet cycling, all at 10-unit-cell thickness with high room-temperature stability. This paves the way for future work to establish the ultimate cycling frequency and endurance of such devices. KEYWORDS: electrolyte gating, magnetoionics, complex oxides, perovskite−brownmillerite transformation, hysteresis, reversibility 
    more » « less