skip to main content

Title: Declines in northern forest tree growth following snowpack decline and soil freezing

Changes in growing season climate are often the foci of research exploring forest response to climate change. By contrast, little is known about tree growth response to projected declines in winter snowpack and increases in soil freezing in seasonally snow‐covered forest ecosystems, despite extensive documentation of the importance of winter climate in mediating ecological processes. We conducted a 5‐year snow‐removal experiment whereby snow was removed for the first 4–5 weeks of winter in a northern hardwood forest at the Hubbard Brook Experimental Forest in New Hampshire,USA. Our results indicate that adverse impacts of reduced snowpack and increased soil freezing on the physiology ofAcer saccharum(sugar maple), a dominant species across northern temperate forests, are accompanied by a 40 ± 3% reduction in aboveground woody biomass increment, averaged across the 6 years following the start of the experiment. Further, we find no indication of growth recovery 1 year after cessation of the experiment. Based on these findings, we integrate spatial modeling of snowpack depth with forest inventory data to develop a spatially explicit, regional‐scale assessment of the vulnerability of forest aboveground growth to projected declines in snowpack depth and increased soil frost. These analyses indicate that nearly 65% of sugar maple basal area in the northeastern United States resides in areas that typically experience insulating snowpack. However, under theRCP4.5 and 8.5 emissions scenarios, we project a 49%–95% reduction in forest area experiencing insulating snowpack by the year 2099 in the northeastern United States, leaving large areas of northern forest vulnerable to these changes in winter climate, particularly along the northern edge of the region. Our study demonstrates that research focusing on growing season climate alone overestimates the stimulatory effect of warming temperatures on tree and forest growth in seasonally snow‐covered forests.

more » « less
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Global Change Biology
Medium: X Size: p. 420-430
p. 420-430
Sponsoring Org:
National Science Foundation
More Like this
  1. The climate is changing in many temperate forests with the amount of forest area dominated by sugar maple experiencing an insulating snowpack expected to shrink between 49 and 95% compared to 1951-2005 values. A reduced snowpack and increased depth and duration of soil frost can injure or kill fine roots, which are essential for plant water and nutrient uptake. These adverse impacts on tree roots can have important impacts on tree growth and ecosystem carbon sequestration. We evaluated the effects of changing winter climate, including snow and soil frost dynamics, by using tree cores to measure sugar maple radial growth rates in the Soil Freezing Study plots at the Hubbard Brook Experimental Forest. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Analysis of these data are published in: Reinmann AB, Susser JR, Demara EMC, and Templer PH. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing. Global Change Biology. 25(2):420-430. 
    more » « less
  2. Climate models for the northeastern United States (U.S.) over the next century predict an increase in air temperature between 2.8 and 4.3 °C and a decrease in the average number of days per year when a snowpack will cover the forest floor (Hayhoe et al. 2007, 2008; Campbell et al. 2010). Studies of forest dynamics in seasonally snow-covered ecosystems have been primarily conducted during the growing season, when most biological activity occurs. However, in recent years considerable progress has been made in our understanding of how winter climate change influences dynamics in these forests. The snowpack insulates soil from below-freezing air temperatures, which facilitates a significant amount of microbial activity. However, a smaller snowpack and increased depth and duration of soil frost amplify losses of dissolved organic C and NO3- in leachate, as well as N2O released into the atmosphere. The increase in nutrient loss following increased soil frost cannot be explained by changes in microbial activity alone. More likely, it is caused by a decrease in plant nutrient uptake following increases in soil frost. We conducted a snow-removal experiment at Hubbard Brook Experimental Forest to determine the effects of a smaller winter snowpack and greater depth and duration of soil frost on trees, soil microbes, and arthropods. A number of publications have been based on these data: Comerford et al. 2013, Reinmann et al. 2019, Templer 2012, and Templer et al. 2012. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrological Processes. 2010; 24:2465–2480. Comerford DP, PG Schaberg, PH Templer, AM Socci, JL Campbell, and KF Wallin. 2013. Influence of experimental snow removal on root and canopy physiology of sugar maple trees in a northern hardwood forest. Oecologia 171:261-269. Hayhoe K, Wake CP, Huntington TG, Luo LF, Schwartz MD, Sheffield J, et al. Past and future changes in climate and hydrological indicators in the US Northeast. Climate Dynamics. 2007; 28:381–407. Hayhoe, K., Wake, C., Anderson, B. et al. Regional climate change projections for the Northeast USA. Mitig Adapt Strateg Glob Change 13, 425–436 (2008). Reinmann AB, J Susser, EMC Demaria, PH Templer. 2019. Declines in northern forest tree growth following snowpack decline and soil freezing.  Global Change Biology 25:420-430. Templer PH. 2012. Changes in winter climate: soil frost, root injury, and fungal communities (Invited). Plant and Soil 35: 15-17 Templer PH , AF Schiller, NW Fuller, AM Socci, JL Campbell, JE Drake, and TH Kunz. 2012. Impact of a reduced winter snowpack on litter arthropod abundance and diversity in a northern hardwood forest ecosystem. Biology and Fertility of Soils 48:413-424. 
    more » « less
  3. Abstract

    Frozen ground influences subsurface hydrology by reducing soil permeability, impeding infiltration, and inducing surface runoff. As the seasonal snowpack strongly controls the evolution of the ground thermal regime, it is necessary to represent the snowpack in models simulating frozen ground and its hydrologic consequences. Conventional understanding of the relationship between snowcover and frozen ground considers the snowpack as an insulator, shielding the ground from cold winter temperatures and thus inhibiting frozen ground. However, observations and modeling at Niwot Ridge, a seasonally snow‐covered alpine catchment in the headwaters of the Boulder Creek watershed, illustrate that snowpack cold content can promote and preserve frozen ground beneath the snowpack during the snowmelt season, unlike bare ground patches that thaw relatively rapidly due to exposure to solar radiation and warm spring temperatures. We present results from a coupled snowpack and subsurface thermo‐hydrologic model including freeze‐thaw processes that captures these contrasts reasonably well. Our results suggest that the cold snowpack at this site acts as a heat sink and promotes frozen ground, in contrast to the conventional understanding of the snowpack as an insulator. In the subalpine zone, infiltration simulations show that shallow freezing beneath snow‐covered ground has a much stronger effect on infiltration than shallow freezing beneath bare ground because the soil beneath the snow remained frozen during snowmelt, whereas bare patches thawed by the time they received excess snowmelt run‐on.

    more » « less
  4. These data are from four separate projects undertaken between 1997 and 2017. The first of these are two snow manipulation (freeze) projects: 1) In 1997, as part of a study of the relationships between snow depth, soil freezing and nutrient cycling, we established eight 10 x 10-m plots located within four stands; two dominated (80%) by sugar maple (SM1 and SM2) and two dominated by yellow birch(YB1 and YB2), with one snow reduction (shoveling) and one reference plot in each stand. 2) In 2001, we established eight new 10-m x 10-m plots (4 treatment, 4 reference) in four new sites; two high elevation, north facing and (East Kineo and West Kineo) two low elevation, south facing (Upper Valley and Lower Valley) maple-beech-birch stands. To establish plots, we cleared minor amounts of understory vegetation from all (both treatment and reference) plots (to facilitate shoveling). Treatments (keeping plots snow free by shoveling through the end of January) were applied in the winters of 1997/98, 1998/99, 2002/2003 and 2003/2004. The Climate Gradient Project was established in October 2010. Here we evaluated relationships between snow depth, soil freezing and nutrient cycling along an elevation/aspect gradient that created variation in climate with little variation in soils or vegetation. We established 6 20 x 20-m plots (intensive plots) and 14 10 x 10-m plots (extensive plots), with eight of the plots facing north and twelve facing south. The Ice Storm project was designed to evaluate the damage and changes ice storms cause to northern hardwood forests in forest structure, nutrient cycling and carbon storage. Ten 20x30 meter plots were established in a predominately sugar maple stand, with 4 icing treatments and 2 control plots. The treatments are as follows: Low (0.25"), Mid (0.5"), Midx2 (0.5") 2 Years in a row, High: (0.75"), Control. The icing treatment was conducted in the winter of 2015-2016, with a second year of icing on the Midx2 treatments plots in the winter of 2016-2017. The treatments are as follows: Low (0.25"), Mid (0.5"), Midx2 (0.5") 2 Years in a row, High: (0.75"), Control. 
    more » « less
  5. Abstract

    Climate change creates a variety of novel stressors for species, such as a decline in snowpack. Loss of snow has many impacts, including the loss of thermal insulation of soils. Winter/spring freezing of soils has been tied to forest mass mortality in multiple locations around the world. Many species, however, can take alternative growth forms, such as tall tree forms and short shrub-like forms. Shrub-forms may provide a unique protection from the snow loss phenomenon by providing a similar thermal insulation as snowpack. That hypothesis is tested here using yellow-cedar, a species undergoing mass mortality due to snow loss. Temperature loggers were placed under both tree- and shrub-form cedars, including areas where the species was experimentally removed. The number of soil freezing days was high in open areas, areas of tree mortality, and where the shrub-form was removed, but was almost zero in areas where the shrub-form was left intact. This suggests that growth-form temperature moderation is possible and may provide an important resistance to the mortality mechanism. In other areas around the world where snow loss is resulting in soil freezing and mortality, growth forms should be investigated as a potential moderating mechanism for this particular climate change stress.

    more » « less