skip to main content

Title: Efficient distributed state estimation of hidden Markov Models over unreliable networks
This paper presents a new recursive Hybrid consensus filter for distributed state estimation on a Hidden Markov Model (HMM), which is well suited to multirobot applications and settings. The proposed algorithm is scalable, robust to network failure and capable of handling non-Gaussian transition and observation models and is, therefore, quite general. No global knowledge of the communication network is assumed. Iterative Conservative Fusion (ICF) is used to reach consensus over potentially correlated priors, while consensus over likelihoods is handled using weights based on a Metropolis Hastings Markov Chain (MHMC). The proposed method is evaluated in a multi-agent tracking problem and a high-dimensional HMM and it is shown that its performance surpasses the competing algorithms.  more » « less
Award ID(s):
1637889 1453652 1302393
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
Page Range / eLocation ID:
112 to 119
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, a deep neural network hidden Markov model (DNN-HMM) is proposed to detect pipeline leakage location. A long pipeline is divided into several sections and the leakage occurs in different section that is defined as different state of hidden Markov model (HMM). The hybrid HMM, i.e., DNN-HMM, consists of a deep neural network (DNN) with multiple layers to exploit the non-linear data. The DNN is initialized by using a deep belief network (DBN). The DBN is a pre-trained model built by stacking top-down restricted Boltzmann machines (RBM) that compute the emission probabilities for the HMM instead of Gaussian mixture model (GMM). Two comparative studies based on different numbers of states using Gaussian mixture model-hidden Markov model (GMM-HMM) and DNN-HMM are performed. The accuracy of the testing performance between detected state sequence and actual state sequence is measured by micro F1 score. The micro F1 score approaches 0.94 for GMM-HMM method and it is close to 0.95 for DNN-HMM method when the pipeline is divided into three sections. In the experiment that divides the pipeline as five sections, the micro F1 score for GMM-HMM is 0.69, while it approaches 0.96 with DNN-HMM method. The results demonstrate that the DNN-HMM can learn a better model of non-linear data and achieve better performance compared to GMM-HMM method. 
    more » « less
  2. Accurate multiple sequence alignment is challenging on many data sets, including those that are large, evolve under high rates of evolution, or have sequence length heterogeneity. While substantial progress has been made over the last decade in addressing the first two challenges, sequence length heterogeneity remains a significant issue for many data sets. Sequence length heterogeneity occurs for biological and technological reasons, including large insertions or deletions (indels) that occurred in the evolutionary history relating the sequences, or the inclusion of sequences that are not fully assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit sequence length heterogeneity: it constructs an alignment on the subset of sequences it considers ‘‘full-length,’’ represents this ‘‘backbone alignment’’ using an ensemble of hidden Markov models (HMMs), and then adds each remaining sequence into the backbone alignment based on an HMM selected for that sequence from the ensemble. Our new method, WeIghTed Consensus Hmm alignment (WITCH), improves on UPP in three important ways: first, it uses a statistically principled technique to weight and rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single HMM; and third, it combines the alignments for each of the selected HMMs using a consensus algorithm that takes the weights into account. We show that this approach provides improved alignment accuracy compared with UPP and other leading alignment methods, as well as improved accuracy for maximum likelihood trees based on these alignments. 
    more » « less
  3. Remaining Useful Life (RUL) estimation is critical in many engineering systems where proper predictive maintenance is needed to increase a unit's effectiveness and reduce time and cost of repairing. Typically for such systems, multiple sensors are normally used to monitor performance, which create difficulties for system state identification. In this paper, we develop a semi-supervised left-to-right constrained Hidden Markov Model (HMM) model, which is effective in estimating the RUL, while capturing the jumps among states in condition dynamics. In addition, based on the HMM model learned from multiple sensors, we build a Partial Observable Markov Decision Process (POMDP) to demonstrate how such RUL estimation can be effectively used for optimal preventative maintenance decision making. We apply this technique to the NASA Engine degradation data and demonstrate the effectiveness of the proposed method. 
    more » « less
  4. Abstract

    The study presented in this paper applies hidden Markov modeling (HMM) to uncover the recurring patterns within a neural activation dataset collected while designers engaged in a design concept generation task. HMM uses a probabilistic approach that describes data (here, fMRI neuroimaging data) as a dynamic sequence of discrete states. Without prior assumptions on the fMRI data's temporal and spatial properties, HMM enables an automatic inference on states in neurocognitive activation data that are highly likely to occur in concept generation. The states with a higher likelihood of occupancy show more activation in the brain regions from the executive control network, the default mode network, and the middle temporal cortex. Different activation patterns and transfers are associated with these states, linking to varying cognitive functions, for example, semantic processing, memory retrieval, executive control, and visual processing, that characterize possible transitions in cognition related to concept generation. HMM offers new insights into cognitive dynamics in design by uncovering the temporal and spatial patterns in neurocognition related to concept generation. Future research can explore new avenues of data analysis methods to investigate design neurocognition and provide a more detailed description of cognitive dynamics in design.

    more » « less
  5. null (Ed.)
    In this paper, we present a novel training method based on Baum-Welch algorithm for hidden Markov models (HMM), named as Comprehensive HMM (CompHMM), which changes the traditional approach of training HMM from positive examples only to be able to utilize both positive and negative examples in training HMMs. By comparison, our method outperformed the standard Baum-Welch method and another HMM discriminative training method significantly through both synthetic and real data in membership prediction task. 
    more » « less