PremiseHerbarium specimens have been used to detect climate‐induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption thatDOYaccurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno‐climatic models (PCMs) designed to predict the effects of climate on flowering date. MethodsHere we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use inPCMs to control for phenological variation among specimens ofStreptanthus tortuosus(Brassicaceeae) when testing for the effects of climate onDOY. We demonstrate that includingPIas an independent variable improves model fit. ResultsIncludingPIinPCMs increased the modelR2relative toPCMs that excludedPI; regression coefficients for climatic parameters, however, remained constant. DiscussionOur protocol provides a simple, quantitative phenological metric for any observed plant. IncludingPIinPCMs increasesR2and enables predictions of theDOYof any phenophase under any specified climatic conditions.
more »
« less
Extreme copy number variation at a tRNA ligase gene affecting phenology and fitness in yellow monkeyflowers
Abstract Copy number variation (CNV) is a major part of the genetic diversity segregating within populations, but remains poorly understood relative to single nucleotide variation. Here, we report on atRNAligase gene (Migut.N02091;RLG1a) exhibiting unprecedented, and fitness‐relevant,CNVwithin an annual population of the yellow monkeyflowerMimulus guttatus.RLG1a variation was associated with multiple traits in pooled population sequencing (PoolSeq) scans of phenotypic and phenological cohorts. Resequencing of inbred lines revealed intermediate‐frequency three‐copy variants ofRLG1a (trip+;5/35 = 14%), andtrip+lines exhibited elevatedRLG1a expression under multiple conditions.trip+carriers, in addition to being over‐represented in late‐flowering and large‐flowered PoolSeq populations, flowered later under stressful conditions in a greenhouse experiment (p < 0.05). In wild population samples, we discovered an additional rareRLG1a variant (high+) that carries 250–300 copies ofRLG1a totalling ~5.7 Mb (20–40% of a chromosome). In the progeny of ahigh+carrier, Mendelian segregation of diagnostic alleles andqPCR‐based copy counts indicate thathigh+is a single tandem array unlinked to the single‐copyRLG1a locus. In the wild,high+carriers had highest fitness in two particularly dry and/or hot years (2015 and 2017; bothp < 0.01), while single‐copy individuals were twice as fecund as eitherCNVtype in a lush year (2016:p < 0.005). Our results demonstrate fluctuating selection onCNVs affecting phenological traits in a wild population, suggest that planttRNAligases mediate stress‐responsive life‐history traits, and introduce a novel system for investigating the molecular mechanisms of gene amplification.
more »
« less
- Award ID(s):
- 1736249
- PAR ID:
- 10081145
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Molecular Ecology
- Volume:
- 28
- Issue:
- 6
- ISSN:
- 0962-1083
- Page Range / eLocation ID:
- p. 1460-1475
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sphingolipids have roles as membrane structural components and as bioactive molecules in plants. InPhyscomitrella patens, 4‐hydroxysphinganine (phytosphingosine, t18:0) is the predominant sphingolipid long‐chain base (LCB). To assess the functional significance of t18:0, CRISPR‐Cas9 mutagenesis was used to generate mutant lines lacking the soleSPHINGOID BASE HYDROXYLASE(SBH) gene encoding the hydroxylase responsible for converting sphinganine (d18:0) to t18:0. Total sphingolipid content insbhprotonemata was 2.4‐fold higher than in wild‐type. Modest changes in glycosyl inositolphosphorylceramide (GIPC) glycosylation patterns occurred. Sphingolipidomic analyses of mutants lacking t18:0 indicated modest alterations in acyl‐chain pairing with d18:0 in GIPCs and ceramides, but dramatic alterations in acyl‐chain pairing in glucosylceramides, in which 4,8‐sphingadienine (d18:2) was the principal LCB. A striking accumulation of free and phosphorylated LCBs accompanied loss of the hydroxylase. Thesbhlines exhibited altered morphology, including smaller chloronemal cell size, irregular cell shape, reduced gametophore size, and increased pigmentation. In the presence of the synthetic trihydroxy LCB t17:0, the endogenous sphingolipid content ofsbhlines decreased to wild‐type levels, and the mutants exhibited phenotypes more similar to wild‐type plants. These results demonstrate the importance of sphingolipid content and composition to Physcomitrella growth. They also illuminate similarities in regulating sphingolipid content but differences in regulating sphingolipid species composition between the bryophyteP. patensand angiospermA. thaliana.more » « less
-
Abstract The genusPinushas wide geographical range and includes species that are the most economically valued among forest trees worldwide. Pine needle length varies greatly among species, but the effects of needle length on anatomy, function, and coordination and trade‐offs among traits are poorly understood. We examined variation in leaf morphological, anatomical, mechanical, chemical, and physiological characteristics among five southern pine species:Pinus echinata,Pinus elliottii,Pinus palustris,Pinus taeda, andPinus virginiana. We found that increasing needle length contributed to a trade‐off between the relative fractions of support versus photosynthetic tissue (mesophyll) across species. From the shortest (7 cm) to the longest (36 cm) needles, mechanical tissue fraction increased by 50%, whereas needle dry density decreased by 21%, revealing multiple adjustments to a greater need for mechanical support in longer needles. We also found a fourfold increase in leaf hydraulic conductance over the range of needle length across species, associated with weaker upward trends in stomatal conductance and photosynthetic capacity. Our results suggest that the leaf size strongly influences their anatomical traits, which, in turn, are reflected in leaf mechanical support and physiological capacity.more » « less
-
Summary Abscisic acid (ABA) receptors belong to theSTARTdomain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life.STARTdomain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterizedSTARTdomain proteins are the 14PYR/PYL/RCAR ABAreceptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently inNicotiana benthamianacoupled to untargetedLC‐MSto identify candidate binding ligands. We optimized this method usingABA–PYLinteractions and show thatABAco‐purifies with wild‐typePYL5 but not a binding site mutant. TheKdofPYL5 forABAis 1.1 μm, which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37STARTdomain‐related proteins, which resulted in the identification of ligands that co‐purified withMLBP1 (At4G01883) orMLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed thatMLBP1 binds to monolinolenin, which we confirmed using recombinantMLBP1. Monolinolenin also co‐purified withMLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.more » « less
-
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.more » « less