skip to main content


Title: Influence of vitamin B12 availability on oceanic dimethylsulfide and dimethylsulfoniopropionate
Environmental contextCobalamin, or vitamin B12, is receiving increased attention as a critical trace nutrient in the growth and metabolic processes of oceanic phytoplankton and bacterial communities. We present evidence that indicates B12 has a more significant role in the biogeochemical cycling of the climatically important compounds dimethylsulfide and dimethylsulfoniopropionate than previously understood. Several possible mechanisms are examined that link cellular-level processes involving B12 to global-scale biogeochemical processes involving the oceanic cycling of dimethylsulfoniopropionate and dimethylsulfide.AbstractEvidence is presented showing that dissolved dimethylsulfoniopropionate (DMSPd) and dimethylsulfide (DMS) concentrations are influenced by the availability of vitamin B12 in two oceanographically distinct regions with different DMS production capacities, the central equatorial Pacific Ocean and the Ross Sea, Antarctica. In both locations, addition of B12 to incubation experiments resulted in decreases in DMS and, in some cases, DMSPd concentrations relative to unamended controls. In no case did increasing iron availability significantly (α=0.1) alter DMS concentrations relative to controls. The relative decreases in DMS between B12 addition and control experiments were significant (α=0.1) in five of seven experiments conducted at ambient iron levels. Overall, DMS concentrations were on average 33.4% (±15.1%; 1 standard deviation) lower, relative to unamended controls, by the end of incubation experiments when B12 was added. Declines in DMSPd were observed in three of five experiments. Similar trends were observed when B12 was added to iron-supplemented bottle incubation experiments (30.4±10.4% lower final DMS concentrations in +B12Fe treatments relative to +Fe treatments). Several possible molecular-level explanations exist for this link between B12 and DMS production, including potential B12 dependence of methyltransferase enzymes involved in both DMS and DMSP degradation. Although the enzymology of these reactions remains unclear, the relationships described here provide evidence for plausible mechanisms behind the microbial modulation of oceanic DMS.  more » « less
Award ID(s):
0739446
NSF-PAR ID:
10081178
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Environmental Chemistry
Volume:
13
Issue:
2
ISSN:
1448-2517
Page Range / eLocation ID:
293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Volatile organic compounds (VOCs) are constituents of marine ecosystems including coral reefs, where they are sources of atmospheric reactivity, indicators of ecosystem state, components of defense strategies, and infochemicals. Most VOCs result from sunlight-related processes; however, their light-driven dynamics are still poorly understood. We studied the spatial variability of a suite of VOCs, including dimethylsulfide (DMS), and the other dimethylsulfoniopropionate-derived compounds (DMSPCs), namely, DMSP, acrylate, and dimethylsulfoxide (DMSO), in waters around colonies of two scleractinian corals ( Acropora pulchra and Pocillopora  sp.) and the brown seaweed  Turbinaria ornata  in Mo’orean reefs, French Polynesia. Concentration gradients indicated that the corals were sources of DMSPCs, but less or null sources of VOCs other than DMS, while the seaweed was a source of DMSPCs, carbonyl sulfide (COS), and poly-halomethanes. A focused study was conducted around an A. pulchra  colony where VOC and DMSPC concentrations and free-living microorganism abundances were monitored every 6 h over 30 h. DMSPC concentrations near the polyps paralleled sunlight intensity, with large diurnal increases and nocturnal decrease. rDNA metabarcoding and metagenomics allowed the determination of microbial diversity and the relative abundance of target functional genes. Seawater near coral polyps was enriched in DMS as the only VOC, plus DMSP, acrylate, and DMSO, with a large increase during the day, coinciding with high abundances of symbiodiniacean sequences. Only 10 cm below, near the coral skeleton colonized by a turf alga, DMSPC concentrations were much lower and the microbial community was significantly different. Two meters down current from the coral, DMSPCs decreased further and the microbial community was more similar to that near the polyps than that near the turf alga. Several DMSP cycling genes were enriched in near-polyp with respect to down-current waters, namely, the eukaryotic DMS production and DMS oxidation encoding genes, attributed to the coral and the algal symbiont, and the prokaryotic DMS production gene dddD , harbored by coral-associated Gammaproteobacteria . Our results suggest that solar radiation-induced oxidative stress caused the release of DMSPCs by the coral holobiont, either directly or through symbiont expulsion. Strong chemical and biological gradients occurred in the water between the coral branches, which we attribute to layered hydrodynamics. 
    more » « less
  2. Abstract

    In the Southern Ocean, it is well‐known that iron (Fe) limits phytoplankton growth. Yet, other trace metals can also affect phytoplankton physiology. This study investigated feedbacks between phytoplankton growth and dissolved Fe, manganese (Mn), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), and cadmium (Cd) concentrations in Southern Ocean shipboard incubations. Three experiments were conducted in September–October 2016 near the West Antarctic Peninsula: Incubations 1 and 3 offshore in the Antarctic Circumpolar Current, and Incubation 2 inshore in Bransfield Strait. Additions of Fe and/or vitamin B12to inshore and offshore waters were employed and allowed assessment of metal (M) uptake relative to soluble reactive phosphorus (P) across a wide range of initial conditions. Offshore, treatments of >1 nmol L−1added Fe were Fe‐replete, whereas inshore waters were already Fe‐replete. Results suggest Mn was a secondary limiting nutrient inshore and offshore. No Fe‐vitamin B12colimitation was observed. Overall, M:P uptake in the incubations was closely related to initial dissolved M:P for Fe, Mn, Co, Ni, and Cd, and for Cu inshore. Final concentrations of Fe and Zn were similar across light treatments of the experiments despite very different phytoplankton responses, and we observed evidence for Co/Cd/Zn substitution and for recycling of biogenic metals as inventories plateaued. In dark bottles, the absence of Mn oxidation may have allowed more efficient recycling of Fe and other trace metals. Our results provide insight into factors governing trace metal uptake, with implications for phytoplankton community composition locally and preformed micronutrient bioavailability in Southern Ocean water masses.

     
    more » « less
  3. null (Ed.)
    The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia . We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia ’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling. 
    more » « less
  4. ABSTRACT Vitamin B 1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi . Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 µM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium [(1.16 ± 0.18) × 10 −6  pmol thiamin cell −1 ], whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies [(2.22 ± 0.07) × 10 −7 or (1.58 ± 0.14) × 10 −7  pmol thiamin cell −1 , respectively] were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelagomonas calceolata . Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure. IMPORTANCE The concept that vitamin B 1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B 1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B 1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B 1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model parameterization and highlights interaction networks among ocean microbes. 
    more » « less
  5. Abstract

    The organic sulfur compound dimethylsulfoniopropionate (DMSP) is synthesized by numerous species of marine phytoplankton, and its volatile degradation products are a major source of biogenic sulfur to the atmosphere. A massive bloom of the dinoflagellateAkashiwo sanguineaoccurred in Monterey Bay, CA, USA, in the fall of 2016 and led to exceptionally high seawater DMSP concentrations that peaked at 4,240 nM. Bacterial consumption rates showed that only a small fraction of the DMSP standing stock flowed through the dissolved DMSP pool per day, contributing to the high DMSP concentrations and creating conditions conducive to production of dimethylsulfide (DMS). Conservative calculations of DMS yield from this persistentA. sanguineabloom suggest substantial regional‐scale inputs of DMS‐sulfur to the atmosphere. Other recently reported major coastal blooms ofA. sanguinea, along with indications that this species may benefit from climate change conditions, reveal a mechanism that could alter oceanic contributions to atmospheric sulfur pools.

     
    more » « less