skip to main content


Title: Maternal size and body condition predict the amount of post‐fertilization maternal provisioning in matrotrophic fish
Abstract

Maternal effects often provide a mechanism for adaptive transgenerational phenotypic plasticity. The maternal phenotype can profoundly influence the potential for such environmentally induced adjustments of the offspring phenotype, causing correlations between offspring and maternal traits. Here, we study potential effects of the maternal phenotype on offspring provisioning prior to and during gestation in the matrotrophic live‐bearing fish speciesPoeciliopsis retropinna. Specifically, we examine how maternal traits such as body fat, lean mass, and length relate to pre‐ (i.e., allocation to the egg prior to fertilization) and post‐fertilization (i.e., allocation to the embryo during pregnancy) maternal provisioning and how this ultimately affects offspring size and body composition at birth. We show that pre‐ and post‐fertilization maternal provisioning is associated with maternal length and body fat, but not with maternal lean mass. Maternal length is proportionally associated with egg mass at fertilization and offspring mass at birth, notably without changing the ratio of pre‐ to post‐fertilization maternal provisioning. This ratio, referred to as the matrotrophy index (MI), is often used to quantify the level of matrotrophy. By contrast, the proportion of maternal body fat is positively associated with post‐fertilization, but not pre‐fertilization, maternal provisioning and consequently is strongly positively correlated with the MI. We furthermore found that the composition of embryos changes throughout pregnancy. Females invest first in embryo lean mass, and then allocate fat reserves to embryos very late in pregnancy. We argue that this delay in fat allocation may be adaptive, because it delays an unnecessary high reproductive burden to the mother during earlier stages of pregnancy, potentially leading to a more slender body shape and improved locomotor performance. In conclusion, our study suggests that (a) offspring size at birth is a plastic trait that is predicted by both maternal length and body fat, and (b) the MI is a plastic trait that is predicted solely by the proportion of maternal body fat. It herewith provides new insights into the potential maternal causes and consequences of embryo provisioning during pregnancy in matrotrophic live‐bearing species.

 
more » « less
Award ID(s):
1754669
NSF-PAR ID:
10081238
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
8
Issue:
24
ISSN:
2045-7758
Page Range / eLocation ID:
p. 12386-12396
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.

     
    more » « less
  2. Abstract Objectives

    Maternal experiences before pregnancy predict birth outcomes, a key indicator of health trajectories, but the timing and pathways for these effects are poorly understood. Here we test the hypothesis that maternal pre‐adult growth patterns predict pregnancy glucose and offspring fetal growth in Cebu, Philippines.

    Methods

    Using multiple regression and path analysis, gestational age‐adjusted birthweight and variables reflecting infancy, childhood, and post‐childhood/adolescent weight gain (conditional weights) were used to predict pregnancy HbA1c and offspring birth outcomes among participants in the Cebu Longitudinal Health and Nutrition Survey.

    Results

    Maternal early/mid‐childhood weight gain predicted birth weight, length, and head circumference in female offspring. Late‐childhood/adolescent weight gain predicted birth length, birth weight, skinfold thickness, and head circumference in female offspring, and head circumference in male offspring. Pregnancy HbA1c did not mediate relationships between maternal growth and birth size parameters.

    Discussion

    In Cebu, maternal growth patterns throughout infancy, childhood, and adolescence predict fetal growth via a pathway independent of circulating glucose, with stronger impacts on female than male offspring, consistent with a role of developmental nutrition on offspring fetal growth. Notably, the strength of relationships followed a pattern opposite to what occurs in response to acute pregnancy stress, with strongest effects on head circumference and birth length and weakest on skinfolds. We speculate that developmental sensitivities are reversed for stable, long‐term nutritional cues that reflect average local environments. These findings are relevant to public health and life‐history theory as further evidence of developmental influences on health and resource allocation across the life course.

     
    more » « less
  3. Abstract

    The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach,Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newbornD. punctatauntil melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.

     
    more » « less
  4. Kelp forests of the California Current System have experienced prolonged marine heatwave (MHW) events that overlap in time with the phenology of life history events (e.g., gametogenesis and spawning) of many benthic marine invertebrates. To study the effect of thermal stress from MHWs during gametogenesis in the purple sea urchin ( Strongylocentrotus purpuratus ) and further, whether MHWs might induce transgenerational plasticity (TGP) in thermal tolerance of progeny, adult urchins were acclimated to two conditions in the laboratory – a MHW temperature of 18°C and a non-MHW temperature of 13°C. Following a four-month long acclimation period (October–January), adults were spawned and offspring from each parental condition were reared at MHW (18°C) and non-MHW temperatures (13°C), creating a total of four embryo treatment groups. To assess transgenerational effects for each of the four groups, we measured thermal tolerance of hatched blastula embryos in acute thermal tolerance trials. Embryos from MHW-acclimated females were more thermally tolerant with higher LT 50 values as compared to progeny from non-MHW-acclimated females. Additionally, there was an effect of female acclimation state on offspring body size at two stages of embryonic development - early gastrulae and prism, an early stage echinopluteus larvae. To assess maternal provisioning as means to also alter embryo performance, we assessed gamete traits from the differentially acclimated females, by measuring size and biochemical composition of eggs. MHW-acclimated females had eggs with higher protein concentrations, while egg size and lipid content showed no differences. Our results indicate that TGP plays a role in altering the performance of progeny as a function of the thermal history of the female, especially when thermal stress coincides with gametogenesis. In addition, the data on egg provisioning show that maternal experience can influence embryo traits via egg protein content. Although this is a laboratory-based study, the results suggest that TGP may play a role in the resistance and tolerance of S. purpuratus early stages in the natural kelp forest setting. 
    more » « less
  5. Abstract The placenta is a complex organ that shows high morphological diversity. Among fish, the first vertebrates that have evolved a placenta, the family Poeciliidae exhibits very diverse modes of maternal provisioning even among congeneric species. Here, we investigated the embryonic growth curve across seven recently-described species of the highly diverse genus Phalloceros (Eigenmann, 1907). We also investigated possible intraspecific differences and whether other female characteristics affected embryo mass. We found that embryo mass decreased until around stage 20 and then increased, resulting in a 1.5 to 3-fold mass gain from fertilization to birth. Embryo mass changed non-linearly with stage of development and was affected by species identity (or locality) and female somatic dry mass. This initial loss then gain of embryonic mass during development is unique among other Poeciliidae species and was conserved across populations and species, even though size at birth can vary. Other species instead either lose mass if they lack placentas or gain mass exponentially if they have placentas. The Phalloceros mode of maternal provisioning could thus represent a different form from that seen in other species of Poeciliidae. 
    more » « less