skip to main content


Title: Different iron storage strategies among bloom-forming diatoms

Diatoms are prominent eukaryotic phytoplankton despite being limited by the micronutrient iron in vast expanses of the ocean. As iron inputs are often sporadic, diatoms have evolved mechanisms such as the ability to store iron that enable them to bloom when iron is resupplied and then persist when low iron levels are reinstated. Two iron storage mechanisms have been previously described: the protein ferritin and vacuolar storage. To investigate the ecological role of these mechanisms among diatoms, iron addition and removal incubations were conducted using natural phytoplankton communities from varying iron environments. We show that among the predominant diatoms,Pseudo-nitzschiawere favored by iron removal and displayed unique ferritin expression consistent with a long-term storage function. Meanwhile,ChaetocerosandThalassiosiragene expression aligned with vacuolar storage mechanisms.Pseudo-nitzschiaalso showed exceptionally high iron storage under steady-state high and low iron conditions, as well as following iron resupply to iron-limited cells. We propose that bloom-forming diatoms use different iron storage mechanisms and that ferritin utilization may provide an advantage in areas of prolonged iron limitation with pulsed iron inputs. As iron distributions and availability change, this speculated ferritin-linked advantage may result in shifts in diatom community composition that can alter marine ecosystems and biogeochemical cycles.

 
more » « less
NSF-PAR ID:
10081291
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
115
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
p. E12275-E12284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Iron is a key micronutrient for ocean phytoplankton, and the availability of iron controls primary production and community composition in large regions of the ocean. Pennate diatoms, a phytoplankton group that responds to iron additions in low-iron areas, can have highly variable iron contents, and some groups such as Pseudo-nitzschia, are known to use ferritin to store iron for later use. We quantified and mapped the intracellular accumulation of iron by a natural population of Pseudo-nitzschia from the Fe-limited equatorial Pacific Ocean. A total of 48 h after iron addition, nearly half of the accumulated iron was localized in storage bodies adjacent to chloroplasts believed to represent ferritin. Over the subsequent 48 h, stored iron was distributed to the rest of the cell through subsequent growth and division, partially supporting the iron contents of the daughter cells. This study provides the first quantitative view into the cellular trafficking of iron in a globally relevant phytoplankton group and demonstrates the unique capabilities of synchrotron-based element imaging approaches.

     
    more » « less
  2. null (Ed.)
    The Southern Ocean (SO) harbors some of the most intense phytoplankton blooms on Earth. Changes in temperature and iron availability are expected to alter the intensity of SO phytoplankton blooms, but little is known about how these changes will influence community composition and downstream biogeochemical processes. We performed light-saturated experimental manipulations on surface ocean microbial communities from McMurdo Sound in the Ross Sea to examine the effects of increased iron availability (+2 nM) and warming (+3 and +6 °C) on nutrient uptake, as well as the growth and transcriptional responses of two dominant diatoms, Fragilariopsis and Pseudo-nitzschia . We found that community nutrient uptake and primary productivity were elevated under both warming conditions without iron addition (relative to ambient −0.5 °C). This effect was greater than additive under concurrent iron addition and warming. Pseudo-nitzschia became more abundant under warming without added iron (especially at 6 °C), while Fragilariopsis only became more abundant under warming in the iron-added treatments. We attribute the apparent advantage Pseudo-nitzschia shows under warming to up-regulation of iron-conserving photosynthetic processes, utilization of iron-economic nitrogen assimilation mechanisms, and increased iron uptake and storage. These data identify important molecular and physiological differences between dominant diatom groups and add to the growing body of evidence for Pseudo-nitzschia ’s increasingly important role in warming SO ecosystems. This study also suggests that temperature-driven shifts in SO phytoplankton assemblages may increase utilization of the vast pool of excess nutrients in iron-limited SO surface waters and thereby influence global nutrient distribution and carbon cycling. 
    more » « less
  3. Abstract

    Phytoplankton iron contents (i.e., quotas) directly link biogeochemical cycles of iron and carbon and drive patterns of nutrient limitation, recycling, and export. Ocean biogeochemical models typically assume that iron quotas are either static or controlled by dissolved iron availability. We measured iron quotas in phytoplankton communities across nutrient gradients in the Pacific Ocean and found that quotas diverged significantly in taxon‐specific ways from laboratory‐derived predictions. Iron quotas varied 40‐fold across nutrient gradients, and nitrogen‐limitation allowed diatoms to accumulate fivefold more iron than co‐occurring flagellates even under low iron availability. Modeling indicates such “luxury” uptake is common in large regions of the low‐iron Pacific Ocean. Among diatoms, both pennate and centric genera accumulated luxury iron, but the cosmopolitan pennate genusPseudo‐nitzschiamaintained iron quotas 10‐fold higher than co‐occurring centric diatoms, likely due to enhanced iron storage. Biogeochemical models should account for taxonomic and macronutrient controls on phytoplankton iron quotas.

     
    more » « less
  4. Abstract

    Short timescale observations are valuable for understanding microbial ecological processes. We assessed dynamics in relative abundance and potential activities by sequencing the small sub-unit ribosomal RNA gene (rRNA gene) and rRNA molecules (rRNA) of Bacteria, Archaea, and Eukaryota once to twice daily between March 2014 and May 2014 from the surface ocean off Catalina Island, California. Typically Ostreococcus, Braarudosphaera, Teleaulax, and Synechococcus dominated phytoplankton sequences (including chloroplasts) while SAR11, Sulfitobacter, and Fluviicola dominated non-phytoplankton Bacteria and Archaea. We observed short-lived increases of diatoms, mostly Pseudo-nitzschia and Chaetoceros, with quickly responding Bacteria and Archaea including Flavobacteriaceae (Polaribacter & Formosa), Roseovarius, and Euryarchaeota (MGII), notably the exact amplicon sequence variants we observed responding similarly to another diatom bloom nearby, 3 years prior. We observed correlations representing known interactions among abundant phytoplankton rRNA sequences, demonstrating the biogeochemical and ecological relevance of such interactions: (1) The kleptochloroplastidic ciliate Mesodinium 18S rRNA gene sequences and a single Teleaulax taxon (via 16S rRNA gene sequences) were correlated (Spearman r = 0.83) yet uncorrelated to a Teleaulax 18S rRNA gene OTU, or any other taxon (consistent with a kleptochloroplastidic or karyokleptic relationship) and (2) the photosynthetic prymnesiophyte Braarudosphaera bigelowii and two strains of diazotrophic cyanobacterium UCYN-A were correlated and each taxon was also correlated to other taxa, including B. bigelowii to a verrucomicrobium and a dictyochophyte phytoplankter (all r > 0.8). We also report strong correlations (r > 0.7) between various ciliates, bacteria, and phytoplankton, suggesting interactions via currently unknown mechanisms. These data reiterate the utility of high-frequency time series to show rapid microbial reactions to stimuli, and provide new information about in situ dynamics of previously recognized and hypothesized interactions.

     
    more » « less
  5. Abstract

    Macronutrients and trace metals are incorporated into phytoplankton during growth and regenerated back into the water column when phytoplankton decay, a process that contributes to the distributions of dissolved trace metals and macronutrients in depth profiles. To study this, we incubated mixed Gulf of Mexico phytoplankton assemblages and monocultures of the diatomPseudo‐nitzschia dolorosaand the dinoflagellateKarenia brevisin the dark. Over 6 months, macronutrients (phosphate, silicic acid, nitrate + nitrite, nitrite, ammonium), chlorophyll‐a, particulate organic carbon and nitrogen, and prokaryotes were monitored alongside dissolved manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb). Results were compared to depth profiles to evaluate the role of regeneration in trace metal cycling. In contrast to water‐column distributions, silicic acid and phosphate were closely coupled in experiments containing diatoms, indicating a shared regeneration pathway. Nitrification and nitrifying prokaryotes were only observed near the end of a subset of the experiments. Of the trace metals, Cd was most tightly coupled with phosphate. Regeneration of Mn was followed by rapid drawdown, consistent with Mn‐oxide formation. Iron (Fe), Cu, and Pb typically remained low until Mn was depleted, suggesting either scavenging to Mn‐oxides or otherwise delayed regeneration of these elements. Cobalt (Co) and Ni were largely conservative, but behaved like nutrients in the experiment using more offshore water low in Cd and Zn. Although experimental conditions were limited in their representation of the water column, these incubations provide novel insight into macronutrient and trace metal regeneration in the oceans.

     
    more » « less