skip to main content


Title: Sexual dimorphism and heightened conditional expression in a sexually selected weapon in the Asian rhinoceros beetle
Abstract

Among the most dramatic examples of sexual selection are the weapons used in battles between rival males over access to females. As with ornaments of female choice, the most “exaggerated” sexually selected weapons vary from male to male more widely than other body parts (hypervariability), and their growth tends to be more sensitive to nutritional state or physiological condition compared with growth of other body parts (“heightened” conditional expression). Here, we useRNAseq analysis to build on recent work exploring these mechanisms in the exaggerated weapons of beetles, by examining patterns of differential gene expression in exaggerated (head and thorax horns) and non‐exaggerated (wings, genitalia) traits in the Asian rhinoceros beetle,Trypoxylus dichotomus. Our results suggest that sexually dimorphic expression of weaponry involves large‐scale changes in gene expression, relative to other traits, while nutrition‐driven changes in gene expression in these same weapons are less pronounced. However, although fewer genes overall were differentially expressed in high‐ vs. low‐nutrition individuals, the number of differentially expressed genes varied predictably according to a trait's degree of condition dependence (head horn > thorax horn > wings > genitalia). Finally, we observed a high degree of similarity in direction of effects (vectors) for subsets of differentially expressed genes across both sexually dimorphic and nutritionally responsive growth. Our results are consistent with a common set of mechanisms governing sexual size dimorphism and condition dependence.

 
more » « less
NSF-PAR ID:
10081610
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Molecular Ecology
Volume:
27
Issue:
24
ISSN:
0962-1083
Page Range / eLocation ID:
p. 5049-5072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many organisms actively manipulate the environment in ways that feed back on their own development, a process referred to as developmental niche construction. Yet, the role that constructed biotic and abiotic environments play in shaping phenotypic variation and its evolution is insufficiently understood. Here, we assess whether environmental modifications made by developing dung beetles impact the environment‐sensitive expression of secondary sexual traits. Gazelle dung beetles both physically modify their ontogenetic environment and structure their biotic interactions through the vertical inheritance of microbial symbionts. By experimentally eliminating (i) physical environmental modifications and (ii) the vertical inheritance of microbes, we assess the degree to which (sym)biotic and physical environmental modifications shape the exaggeration of several traits varying in their degree and direction of sexual dimorphism. We expected the experimental reduction of a larva's ability to shape its environment to affect trait size and scaling, especially for traits that are sexually dimorphic and environmentally plastic. We find that compromised developmental niche construction indeed shapes sexual dimorphism in overall body size and the absolute sizes of male‐limited exaggerated head horns, the strongly sexually dimorphic fore tibia length and width, as well as the weakly dimorphic elytron length and width. This suggests that environmental modifications affect sex‐specific phenotypic variation in functional traits. However, most of these effects can be attributed to nutrition‐dependent plasticity in size and non‐isometric trait scaling rather than body‐size‐independent effects on the developmental regulation of trait size. Our findings suggest that the reciprocal relationship between developing organisms, their symbionts, and their environment can have considerable impacts on sexual dimorphism and functional morphology.

     
    more » « less
  2. Abstract

    Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.

     

    more » « less
  3. Abstract

    Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While RNAi-mediated knockdowns of the insulin receptor suggest that the insulin signaling pathway regulates nutrition-dependent growth including exaggerated horns, the genes that regulate disproportionate growth have yet to be identified. We used RNAi-mediated knockdown of several genes to investigate their potential role in growth and scaling of the sexually dimorphic, exaggerated head horns of T. dichotomus. Knockdown of the insulin signaling substrate chico and the ecdysone response element broad caused significant decreases in head horn length, while having no or minimal effects on other structures such as elytra and tibiae. However, scaling of horns to body size was not affected by either knockdown. In addition, knockdown of phosphatase and tensin homolog, a negative regulator of the insulin signaling pathway, had no significant effects on any trait. Our results do not identify any candidate genes that may specifically mediate the allometric aspect of horn growth, but they do confirm the insulin signaling pathway as a mediator of conditional trait expression, and importantly implicate the ecdysone signaling pathway, possibly in conjunction with insulin signaling, as an additional mediator of horn growth.

     
    more » « less
  4. Abstract

    Sexually dimorphic behaviour is pervasive across animals, with males and females exhibiting different mate selection, parental care, foraging, dispersal, and territorial strategies. However, the genetic underpinnings of sexually dimorphic behaviours are poorly understood. Here we investigate gene networks and expression patterns associated with sexually dimorphic imprinting‐like learning in the butterflyBicyclus anynana. In this species, both males and females learn visual preferences, but learn preferences for different traits and use different signals as salient, unconditioned cues. To identify genes and gene networks associated with this behaviour, we examined gene expression profiles of the brains and eyes of male and female butterflies immediately post training and compared them to the same tissues of naïve individuals. We found more differentially expressed genes and a greater number of associated gene networks in the eyes, indicating a role of the peripheral nervous system in visual imprinting‐like learning. Females had higher chemoreceptor expression levels than males, supporting the hypothesized sexual dimorphic use of chemical cues during the learning process. In addition, genes that influenceB. anynanawing patterns (sexual ornaments), such asinvected,spalt, andapterous, were also differentially expressed in the brain and eye, suggesting that these genes may influence both sexual ornaments and the preferences for these ornaments. Our results indicate dynamic and sex‐specific responses to social scenario in both the peripheral and central nervous systems and highlight the potential role of wing patterning genes in mate preference and learning across the Lepidoptera.

     
    more » « less
  5. Abstract

    Polyphenism allows organisms to respond to varying environmental conditions by adopting alternative collections of morphological traits, often leading to different reproductive strategies. In many insects, polyphenism affecting the development of flight trades dispersal ability for increased fecundity. The soapberry bug Jadera haematoloma (Hemiptera: Rhopalidae) exhibits wing polyphenism in response to juvenile nutritional resources and cohort density. Development of full-length wings and flight-capable thoracic muscles occurs more frequently in cohorts raised under low food density conditions, and these features are correlated to reduced female fecundity. Soapberry bugs represent an example of polyphenic dispersal-fecundity trade-off. Short-wing development is not sex-limited, and morphs can also differ in male fertility. We have previously shown, via a candidate gene approach, that manipulation of insulin signaling can alter the threshold for nutritional response and that changes in the activity of this pathway underlie, at least in part, differences in the polyphenic thresholds in different host-adapted populations of J. haematoloma. We now expand the examination of this system using transcriptome sequencing across a multidimensional matrix of life stage, tissue, sex, food density, and host population. We also examine the use of wing and thorax shape as factors modeling gene expression. In addition to insulin signaling, we find that components of the TOR, Hippo, Toll, and estrogen-related receptor pathways are differentially expressed in the thorax of polyphenic morphs. The transcription factor Sox14 was one of the few genes differentially expressed in the gonads of morphs, being up-regulated in ovaries. We identify two transcription factors as potential mediators of morph-specific male fertility differences. We also find that bugs respond to nutrient limitation with expression of genes linked to cuticle structure and spermatogenesis. These findings provide a broad perspective from which to view this nutrition-dependent polyphenism.

     
    more » « less