skip to main content


Title: The Northeast Winter Monsoon over the Indian Subcontinent and Southeast Asia: Evolution, Interannual Variability, and Model Simulations

The northeast monsoon (NEM) brings the bulk of annual rainfall to southeastern peninsular India, Sri Lanka, and the neighboring Southeast Asian countries. This October–December monsoon is referred to as the winter monsoon in this region. In contrast, the southwest summer monsoon brings bountiful rainfall to the Indo-Gangetic Plain. The winter monsoon region is objectively demarcated from analysis of the timing of peak monthly rainfall. Because of the region’s complex terrain, in situ precipitation datasets are assessed using high-spatiotemporal-resolution Tropical Rainfall Measuring Mission (TRMM) rainfall estimates, prior to their use in monsoon evolution, variability, and trend analyses. The Global Precipitation Climatology Center’s in situ analysis showed the least bias from TRMM.

El Niño–Southern Oscillation’s (ENSO) impact on NEM rainfall is shown to be significant, leading to stronger NEM rainfall over southeastern peninsular India and Sri Lanka but diminished rainfall over Thailand, Vietnam, and the Philippines. The impact varies subseasonally, being weak in October and strong in November. The positive anomalies over peninsular India are generated by anomalous anticyclonic flow centered over the Bay of Bengal, which is forced by an El Niño–related reduction in deep convection over the Maritime Continent.

The historical twentieth-century climate simulations informing the Intergovernmental Panel on Climate Change’s Fifth Assessment (IPCC-AR5) show varied deficiencies in the NEM rainfall distribution and a markedly weaker (and often unrealistic) ENSO–NEM rainfall relationship.

 
more » « less
NSF-PAR ID:
10081660
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
32
Issue:
1
ISSN:
0894-8755
Page Range / eLocation ID:
p. 231-249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. The Indian Ocean presents two distinct climate regimes. The north Indian Ocean is dominated by the monsoons, whereas the seasonal reversal is less pronounced in the south. The prevailing wind pattern produces upwelling along different parts of the coast in both hemispheres during different times of the year. Additionally, dynamical processes and eddies either cause or enhance upwelling. This paper reviews the phenomena of upwelling along the coast of the Indian Ocean extending from the tip of South Africa to the southern tip of the west coast of Australia. Observed features, underlying mechanisms, and the impact of upwelling on the ecosystem are presented. In the Agulhas Current region, cyclonic eddies associated with Natal pulses drive slope upwelling and enhance chlorophyll concentrations along the continental margin. The Durban break-away eddy spun up by the Agulhas upwells cold nutrient-rich water. Additionally, topographically induced upwelling occurs along the inshore edges of the Agulhas Current. Wind-driven coastal upwelling occurs along the south coast of Africa and augments the dynamical upwelling in the Agulhas Current. Upwelling hotspots along the Mozambique coast are present in the northern and southern sectors of the channel and are ascribed to dynamical effects of ocean circulation in addition to wind forcing. Interaction of mesoscale eddies with the western boundary, dipole eddy pair interactions, and passage of cyclonic eddies cause upwelling. Upwelling along the southern coast of Madagascar is caused by the Ekman wind-driven mechanism and by eddy generation and is inhibited by the Southwest Madagascar Coastal Current. Seasonal upwelling along the East African coast is primarily driven by the northeast monsoon winds and enhanced by topographically induced shelf breaking and shear instability between the East African Coastal Current and the island chains. The Somali coast presents a strong case for the classical Ekman type of upwelling; such upwelling can be inhibited by the arrival of deeper thermocline signals generated in the offshore region by wind stress curl. Upwelling is nearly uniform along the coast of Arabia, caused by the alongshore component of the summer monsoon winds and modulated by the arrival of Rossby waves generated in the offshore region by cyclonic wind stress curl. Along the west coast of India, upwelling is driven by coastally trapped waves together with the alongshore component of the monsoon winds. Along the southern tip of India and Sri Lanka, the strong Ekman transport drives upwelling. Upwelling along the east coast of India is weak and occurs during summer, caused by alongshore winds. In addition, mesoscale eddies lead to upwelling, but the arrival of river water plumes inhibits upwelling along this coast. Southeasterly winds drive upwelling along the coast of Sumatra and Java during summer, with Kelvin wave propagation originating from the equatorial Indian Ocean affecting the magnitude and extent of the upwelling. Both El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events cause large variability in upwelling here. Along the west coast of Australia, which is characterized by the anomalous Leeuwin Current, southerly winds can cause sporadic upwelling, which is prominent along the southwest, central, and Gascoyne coasts during summer. Open-ocean upwelling in the southern tropical Indian Ocean and within the Sri Lanka Dome is driven primarily by the wind stress curl but is also impacted by Rossby wave propagations. Upwelling is a key driver enhancing biological productivity in all sectors of the coast, as indicated by enhanced sea surface chlorophyll concentrations. Additional knowledge at varying levels has been gained through in situ observations and model simulations. In the Mozambique Channel, upwelling simulates new production and circulation redistributes the production generated by upwelling and mesoscale eddies, leading to observations of higher ecosystem impacts along the edges of eddies. Similarly, along the southern Madagascar coast, biological connectivity is influenced by the transport of phytoplankton from upwelling zones. Along the coast of Kenya, both productivity rates and zooplankton biomass are higher during the upwelling season. Along the Somali coast, accumulation of upwelled nutrients in the northern part of the coast leads to spatial heterogeneity in productivity. In contrast, productivity is more uniform along the coasts of Yemen and Oman. Upwelling along the west coast of India has several biogeochemical implications, including oxygen depletion, denitrification, and high production of CH4 and dimethyl sulfide. Although weak, wind-driven upwelling leads to significant enhancement of phytoplankton in the northwest Bay of Bengal during the summer monsoon. Along the Sumatra and Java coasts, upwelling affects the phytoplankton composition and assemblages. Dissimilarities in copepod assemblages occur during the upwelling periods along the west coast of Australia. Phytoplankton abundance characterizes inshore edges of the slope during upwelling season, and upwelling eddies are associated with krill abundance. The review identifies the northern coast of the Arabian Sea and eastern coasts of the Bay of Bengal as the least observed sectors. Additionally, sustained long-term observations with high temporal and spatial resolutions along with high-resolution modelling efforts are recommended for a deeper understanding of upwelling, its variability, and its impact on the ecosystem. 
    more » « less
  2. This study introduces an objective definition for onset and demise of the northeast Indian monsoon (NEM). The definition is based on the land surface temperature analysis over the Indian subcontinent. It is diagnosed from the inflection points in the daily anomaly cumulative curve of the area-averaged surface temperature over the provinces of Andhra Pradesh, Rayalseema, and Tamil Nadu located in the southeastern part of India. Per this definition, the climatological onset and demise dates of the NEM season are 6 November and 13 March, respectively. The composite evolution of the seasonal cycle of 850-hPa winds, surface wind stress, surface ocean currents, and upper-ocean heat content suggest a seasonal shift around the time of the diagnosed onset and demise dates of the NEM season. The interannual variations indicate onset date variations have a larger impact than demise date variations on the seasonal length, seasonal anomalies of rainfall, and surface temperature of the NEM. Furthermore, it is shown that warm El Niño–Southern Oscillation (ENSO) episodes are associated with excess seasonal rainfall, warm seasonal land surface temperature anomalies, and reduced lengths of the NEM season. Likewise, cold ENSO episodes are likely to be related to seasonal deficit rainfall anomalies, cold land surface temperature anomalies, and increased lengths of the NEM season.

     
    more » « less
  3. Understanding multiscale rainfall variability in the South Pacific convergence zone (SPCZ), a southeastward-oriented band of precipitating deep convection in the South Pacific, is critical for both the human and natural systems dependent on its rainfall, and for interpreting similar off-equatorial diagonal convection zones around the globe. A k-means clustering method is applied to daily austral summer (December–February) Tropical Rainfall Measuring Mission (TRMM) satellite rainfall to extract representative spatial patterns of rainfall over the SPCZ region for the period 1998–2013. For a k = 4 clustering, pairs of clusters differ predominantly via spatial translation of the SPCZ diagonal, reflecting either warm or cool phases of El Niño–Southern Oscillation (ENSO). Within each of these ENSO phase pairs, one cluster exhibits intense precipitation along the SPCZ while the other features weakened rainfall. Cluster temporal behavior is analyzed to investigate higher-frequency forcings (e.g., the Madden–Julian oscillation and synoptic-scale disturbances) that trigger deep convection where SSTs are sufficiently warm. Pressure-level winds and specific humidity from the Climate Forecast System Reanalysis are composited with respect to daily cluster assignment to investigate differences between active and quiescent SPCZ conditions to reveal the conditions supporting enhanced or suppressed SPCZ precipitation, such as low-level poleward moisture transport from the equator. Empirical orthogonal functions (EOFs) of TRMM precipitation are computed to relate the “modal view” of SPCZ variability associated with the EOFs to the “state view” associated with the clusters. Finally, the cluster number is increased to illustrate the change in TRMM rainfall patterns as additional degrees of freedom are permitted.

     
    more » « less
  4. Abstract In the Asia–Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990–2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June–August (JJA), and by precipitation frequency in December–February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March–May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region. 
    more » « less
  5. El Niño–Southern Oscillation (ENSO) is known to have teleconnections to atmospheric circulations and weather patterns around the world. Previous studies have examined connections between ENSO and rainfall in tropical South America, but little work has been done connecting ENSO phases with convection in subtropical South America. The Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) has provided novel observations of convection in this region, including that convection in the lee of the Andes Mountains is among the deepest and most intense in the world with frequent upscale growth into mesoscale convective systems. A 16-yr dataset from the TRMM PR is used to analyze deep and wide convection in combination with ERA-Interim reanalysis storm composites. Results from the study show that deep and wide convection occurs in all phases of ENSO, with only some modest variations in frequency between ENSO phases. However, the most statistically significant differences between ENSO phases occur in the three-dimensional storm structure. Deep and wide convection during El Niño tends to be taller and contain stronger convection, while La Niña storms contain stronger stratiform echoes. The synoptic and thermodynamic conditions supporting the deeper storms during El Niño is related to increased convective available potential energy, a strengthening of the South American low-level jet (SALLJ), and a stronger upper-level jet stream, often with the equatorward-entrance region of the jet stream directly over the convective storm locations. These enhanced synoptic and thermodynamic conditions provide insight into how the structure of some of the most intense convection on Earth varies with phases of ENSO.

     
    more » « less