skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor
Quorum sensing is a cell–cell communication process that bacteria use to orchestrate group behaviors. Quorum sensing is mediated by signal molecules called autoinducers. Autoinducers are often structurally similar, raising questions concerning how bacteria distinguish among them. Here, we use thePseudomonas aeruginosaLasR quorum-sensing receptor to explore signal discrimination. The cognate autoinducer, 3OC12homoserine lactone (3OC12HSL), is a more potent activator of LasR than other homoserine lactones. However, other homoserine lactones can elicit LasR-dependent quorum-sensing responses, showing that LasR displays ligand promiscuity. We identify mutants that alter which homoserine lactones LasR detects. Substitution at residue S129 decreases the LasR response to 3OC12HSL, while enhancing discrimination against noncognate autoinducers. Conversely, the LasR L130F mutation increases the potency of 3OC12HSL and other homoserine lactones. We solve crystal structures of LasR ligand-binding domains complexed with noncognate autoinducers. Comparison with existing structures reveals that ligand selectivity/sensitivity is mediated by a flexible loop near the ligand-binding site. We show that LasR variants with modified ligand preferences exhibit altered quorum-sensing responses to autoinducers in vivo. We suggest that possessing some ligand promiscuity endows LasR with the ability to optimally regulate quorum-sensing traits.  more » « less
Award ID(s):
1713731 1734030
PAR ID:
10081682
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
116
Issue:
1
ISSN:
0027-8424
Page Range / eLocation ID:
p. 245-254
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Viruses that infect bacteria, called phages, shape the composition of bacterial communities and are important drivers of bacterial evolution. We recently showed that temperate phages, when residing in bacteria (i.e., prophages), are capable of manipulating the bacterial cell-to-cell communication process called quorum sensing (QS). QS relies on the production, release, and population-wide detection of signaling molecules called autoinducers (AI). Gram-negative bacteria commonly employ N -acyl homoserine lactones (HSL) as AIs that are detected by LuxR-type QS receptors. Phage ARM81ld is a prophage of the aquatic bacterium Aeromonas sp. ARM81, and it encodes a homolog of a bacterial LuxR, called LuxR ARM81ld . LuxR ARM81ld detects host Aeromonas -produced C4-HSL, and in response, activates the phage lytic program, triggering death of its host and release of viral particles. Here, we show that phage LuxR ARM81ld activity is modulated by noncognate HSL ligands and by a synthetic small molecule inhibitor. We determine that HSLs with acyl chain lengths equal to or longer than C8 antagonize LuxR ARM81ld . For example, the C8-HSL AI produced by Vibrio fischeri that coexists with Aeromonads in aquatic environments, binds to and inhibits LuxR ARM81ld , and consequently, protects the host from lysis. Coculture of V. fischeri with the Aeromonas sp. ARM81 lysogen suppresses phage ARM81ld virion production. We propose that the cell density and species composition of the bacterial community could determine outcomes in bacterial-phage partnerships. 
    more » « less
  2. ABSTRACT Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. QS relies on the cell-density-dependent production, accumulation, and receptor-mediated detection of extracellular signaling molecules called autoinducers (AIs). Gram-negative bacteria commonly use N -acyl homoserine lactones (AHLs) as their AIs, and they are detected by LuxR-type receptors. Often, LuxR-type receptors are insoluble when not bound to a cognate AI. In this report, we show that LuxR-type receptors are encoded on phage genomes, and in the cases we tested, the phage LuxR-type receptors bind to and are solubilized specifically by the AHL AI produced by the host bacterium. We do not yet know the viral activities that are controlled by these phage QS receptors; however, our observations, coupled with recent reports, suggest that their occurrence is more widespread than previously appreciated. Using receptor-mediated detection of QS AIs could enable phages to garner information concerning the population density status of their bacterial hosts. We speculate that such information can be exploited by phages to optimize the timing of execution of particular steps in viral infection. IMPORTANCE Bacteria communicate with chemical signal molecules to regulate group behaviors in a process called quorum sensing (QS). In this report, we find that genes encoding receptors for Gram-negative bacterial QS communication molecules are present on genomes of viruses that infect these bacteria. These viruses are called phages. We show that two phage-encoded receptors, like their bacterial counterparts, bind to the communication molecule produced by the host bacterium, suggesting that phages can “listen in” on their bacterial hosts. Interfering with bacterial QS and using phages to kill pathogenic bacteria represent attractive possibilities for development of new antimicrobials to combat pathogens that are resistant to traditional antibiotics. Our findings of interactions between phages and QS bacteria need consideration as new antimicrobial therapies are developed. 
    more » « less
  3. Quorum sensing is a bacterial communication process whereby bacteria produce, release, and detect extracellular signaling molecules called autoinducers to coordinate collective behaviors. In the pathogen Vibrio cholerae, the quorum-sensing autoinducer 3,5-dimethyl-pyrazin-2-ol (DPO) binds the receptor and transcription factor VqmA. The DPO-VqmA complex activates transcription of vqmR, encoding the VqmR small RNA, which represses genes required for biofilm formation and virulence factor production. Here, we show that VqmA is soluble and properly folded, and activates basal-level transcription of its target vqmR in the absence of DPO. VqmA transcriptional activity is increased in response to increasing concentrations of DPO, allowing VqmA to drive the V. cholerae quorum-sensing transition at high cell densities. We solved the DPO-VqmA crystal structure to 2.0 Å resolution and compared it to existing structures to understand the conformational changes VqmA undergoes upon DNA binding. Analysis of DPO analogs showed that a hydroxyl or carbonyl group at the 2’ position is critical for binding to VqmA. The proposed DPO precursor, a linear molecule, N-alanyl-aminoacetone or Ala-AA, also bound and activated VqmA. Results from site-directed mutagenesis and competitive ligand-binding analyses revealed that DPO and Ala-AA occupy the same binding site. In summary, our structure–function analysis identifies key features required for VqmA activation and DNA binding and establishes that, while VqmA binds two different ligands, VqmA does not require a bound ligand for folding or basal transcriptional activity. However, bound ligand is required for maximal activity. 
    more » « less
  4. Quorum sensing is described as a widespread cell density-dependent signaling mechanism in bacteria. Groups of cells coordinate gene expression by secreting and responding to diffusible signal molecules. Theory, however, predicts that individual cells may short-circuit this mechanism by directly responding to the signals they produce irrespective of cell density. In this study, we characterize this self-sensing effect in the acyl-homoserine lactone quorum sensing system of Pseudomonas aeruginosa . We show that antiactivators, a set of proteins known to affect signal sensitivity, function to prevent self-sensing. Measuring quorum-sensing gene expression in individual cells at very low densities, we find that successive deletion of antiactivator genes qteE and qslA produces a bimodal response pattern, in which increasing proportions of constitutively induced cells coexist with uninduced cells. Comparing responses of signal-proficient and -deficient cells in cocultures, we find that signal-proficient cells show a much higher response in the antiactivator mutant background but not in the wild-type background. Our results experimentally demonstrate the antiactivator-dependent transition from group- to self-sensing in the quorum-sensing circuitry of P. aeruginosa . Taken together, these findings extend our understanding of the functional capacity of quorum sensing. They highlight the functional significance of antiactivators in the maintenance of group-level signaling and experimentally prove long-standing theoretical predictions. 
    more » « less
  5. Buchrieser, Carmen (Ed.)
    ABSTRACT Quorum sensing is a chemical communication process in which bacteria use the production, release, and detection of signal molecules called autoinducers to orchestrate collective behaviors. The human pathogen Vibrio cholerae requires quorum sensing to infect the small intestine. There, V. cholerae encounters the absence of oxygen and the presence of bile salts. We show that these two stimuli differentially affect quorum-sensing function and, in turn, V. cholerae pathogenicity. First, during anaerobic growth, V. cholerae does not produce the CAI-1 autoinducer, while it continues to produce the DPO autoinducer, suggesting that CAI-1 may encode information specific to the aerobic lifestyle of V. cholerae . Second, the quorum-sensing receptor-transcription factor called VqmA, which detects the DPO autoinducer, also detects the lack of oxygen and the presence of bile salts. Detection occurs via oxygen-, bile salt-, and redox-responsive disulfide bonds that alter VqmA DNA binding activity. We propose that VqmA serves as an information processing hub that integrates quorum-sensing information, redox status, the presence or absence of oxygen, and host cues. In response to the information acquired through this mechanism, V. cholerae appropriately modulates its virulence output. IMPORTANCE Quorum sensing (QS) is a process of chemical communication that bacteria use to orchestrate collective behaviors. QS communication relies on chemical signal molecules called autoinducers. QS regulates virulence in Vibrio cholerae , the causative agent of the disease cholera. Transit into the human small intestine, the site of cholera infection, exposes V. cholerae to the host environment. In this study, we show that the combination of two stimuli encountered in the small intestine, the absence of oxygen and the presence of host-produced bile salts, impinge on V. cholerae QS function and, in turn, pathogenicity. We suggest that possessing a QS system that is responsive to multiple environmental, host, and cell density cues enables V. cholerae to fine-tune its virulence capacity in the human intestine. 
    more » « less