Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (
Designed site‐directed dimerization of the monoanion radicals of a π‐bowl in the solid state is reported. Dibenzo[a,g]corannulene (C28H14) was selected based on the asymmetry of the charge/spin localization in the C28H14.−anion. Controlled one‐electron reduction of C28H14with Cs metal in diglyme resulted in crystallization of a new dimer, [{Cs+(diglyme)}2(C28H14−C28H14)2−] (
- PAR ID:
- 10081706
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 130
- Issue:
- 21
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 6279-6283
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Site‐Directed Dimerization of Bowl‐Shaped Radical Anions to Form a σ‐Bonded Dibenzocorannulene Dimer
Abstract 1 ), as revealed by single crystal X‐ray diffraction study performed in a broad range of temperatures. The C−C bond length between two C28H14.−bowls (1.560(8) Å) measured at −143 °C does not significantly change upon heating of the crystal to +67 °C. The single σ‐bond character of the C−C linker is confirmed by calculations. The trans‐disposition of two bowls in1 is observed with the torsion angles around the central C−C bond of 172.3(5)° and 173.5(5)°. A systematic theoretical evaluation of dimerization pathways of C28H14.−radicals confirmed that the trans‐isomer found in1 is energetically favored. -
Abstract Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical
1 .with boron bromide gives the dibromoboron dithiolene radical2 ., the parallel reaction of1 .with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3 .. Radicals2 .and3 .were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3 .undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4 , which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl). -
Abstract Whereas low‐temperature (−78 °C) reaction of the lithium dithiolene radical
1 .with boron bromide gives the dibromoboron dithiolene radical2 ., the parallel reaction of1 .with (C6H11)2BCl (0 °C) affords the dicyclohexylboron dithiolene radical3 .. Radicals2 .and3 .were characterized by single‐crystal X‐ray diffraction, UV/Vis, and EPR spectroscopy. The nature of these radicals was also probed computationally. Under mild conditions,3 .undergoes unexpected thiourea‐mediated B−C bond activation to give zwitterion4 , which may be regarded as an anionic dithiolene‐modified carbene complex of the sulfenyl cation RS+(R=cyclohexyl). -
Abstract Chemical reduction of pentacene (C22H14,
1 ) with Group 1 metals ranging from Li to Cs revealed that1 readily undergoes a two‐fold reduction to afford a doubly‐reduced1 2−anion in THF. With the help of 18‐crown‐6 ether used as a secondary coordinating agent, five π‐complexes of1 2−with different alkali metal counterions have been isolated and fully characterized. This series of complexes enables the first evaluation of alkali‐metal ion binding patterns and structural changes of the1 2−dianion based on the crystallographically confirmed examples. The difference in coordination of the smallest Li+ion vs. heavier Group 1 congeners has been demonstrated. In addition, the use of benzo‐15‐crown‐5 in the reaction of1 with Na metal allowed the isolation of the unique solvent‐separated ion product with a “naked” dianion,1 2−. The detailed structural analyses of the series revealed the C−C bond alteration and core deformation of pentacene upon two‐fold reduction and complexation. The negative charge localization at the central six‐membered ring of1 2−identified by theoretical calculations corroborates with the X‐ray crystallographic results. Subsequent in‐depth theoretical analysis provided a detailed description of changes in the electronic structure and aromaticity of pentacene upon reduction. -
null (Ed.)One-electron reduction of bowl-shaped indenocorannulene, C 26 H 12 , with Rb metal in THF affords [{Rb + (18-crown-6)} 2 (C 26 H 12 –C 26 H 12 ) 2− ]·4THF, as confirmed by single-crystal X-ray diffraction. The product consists of a dimeric σ-bonded dianion (C–C, 1.568(7) Å) having two endo -η 6 coordinated {Rb + (18-crown-6)} moieties (Rb–C, 3.272(4)–3.561(4) Å). The (C 26 H 12 –C 26 H 12 ) 2− dimer represents the first crystallographically confirmed example of spontaneous coupling for indenocorannulene monoanion radicals, C 26 H 12 ˙ − . Comprehensive theoretical investigation of the new dimer confirms the single σ-bond character of the linker and reveals a significant increase of both thermodynamic and kinetic stability of [σ-(C 26 H 12 ) 2 ] 2− in comparison with analogues formed by such π-bowls as corannulene and its dibenzo-derivative. The in-depth computational analysis and direct comparison of the series demonstrates the effect of curvature on radical coupling processes, allowing control over stability and reactivity of bowl-shaped π-radicals.more » « less