skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The principles of tomorrow's university
In the 21st Century, research is increasingly data- and computation-driven. Researchers, funders, and the larger community today emphasize the traits of openness and reproducibility. In March 2017, 13 mostly early-career research leaders who are building their careers around these traits came together with ten university leaders (presidents, vice presidents, and vice provosts), representatives from four funding agencies, and eleven organizers and other stakeholders in an NIH- and NSF-funded one-day, invitation-only workshop titled "Imagining Tomorrow's University." Workshop attendees were charged with launching a new dialog around open research – the current status, opportunities for advancement, and challenges that limit sharing. The workshop examined how the internet-enabled research world has changed, and how universities need to change to adapt commensurately, aiming to understand how universities can and should make themselves competitive and attract the best students, staff, and faculty in this new world. During the workshop, the participants re-imagined scholarship, education, and institutions for an open, networked era, to uncover new opportunities for universities to create value and serve society. They expressed the results of these deliberations as a set of 22 principles of tomorrow's university across six areas: credit and attribution, communities, outreach and engagement, education, preservation and reproducibility, and technologies. Activities that follow on from workshop results take one of three forms. First, since the workshop, a number of workshop authors have further developed and published their white papers to make their reflections and recommendations more concrete. These authors are also conducting efforts to implement these ideas, and to make changes in the university system.  Second, we plan to organise a follow-up workshop that focuses on how these principles could be implemented. Third, we believe that the outcomes of this workshop support and are connected with recent theoretical work on the position and future of open knowledge institutions.  more » « less
Award ID(s):
1645571
PAR ID:
10081737
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
F1000Research
Volume:
7
ISSN:
2046-1402
Page Range / eLocation ID:
1926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taylor, O. (Ed.)
    HBCUs have outpaced all other institutions of higher education in graduating Black students who are empowered to pursue graduate programs and contribute to the science, technology, engineering, and mathematics (STEM) ecosystem. These successes are due, in part, to Black presidents who are at the helm of these institutions. This study examined the practices of thirteen Black HBCU presidents or senior administrators. The authors interviewed these leaders and relied upon Gallos and Bolman’s four frameworks to explore university presidents’ decision-making to understand the skillsets and values that enabled them to create educational environments where Black STEM students thrived. These HBCU presidents utilize multiple leadership frames concurrently, while operating under a race-conscious approach to understand, identify, and counter the structures of systemic racism. 
    more » « less
  2. null (Ed.)
    Cybersecurity education has grown exponentially over the past decade. This growth occurred at all levels of education – from high schools to community colleges to four-year universities. At the same time, renewed interest in helping students transfer between higher education institutions has resulted in calls from policy makers and higher education leaders to create seamless pathways for students. Aligning cybersecurity education with changes in the transfer landscape, a case study was conducted to provide a framework for understanding how to improve services to cybersecurity transfer students. The case study involved four components: a review of articulation agreement literature, a review of processes used in the authors’ home institutions, a review of our experiences with the cybersecurity articulation agreement process, and recommendations for future articulation agreements. 
    more » « less
  3. Usable STEM knowledge for tomorrow's STEM problems More universities and education programs need more STEM knowledge in formal and informal settings to guide learners in applying STEM learning to the creation of solutions. To address this challenge, Nancy Butler Songer, the dean of the College of Education at the University of Utah designed a learning approach, Solutioning, that guides youth to deepen science content through science and engineering practices. Creating a six-week curricular program, the learning approach provided opportunities for students to use engineering design to create and provide feedback on a trap design that would attract a local invasive insect that was harmful to their community. Research was conducted on studies to provide empirical evidence on student STEM knowledge and learning and their ability to define science and engineering. Research results indicate that even elementary-age students demonstrate significant improvement in their understanding of STEM arguments as evaluated with a pre-post assessment before and after implementing a six-week solutioning curricular program. 
    more » « less
  4. Over the past 20 years, the explosion of genomic data collection and the cloud computing revolution have made computational and data science research accessible to anyone with a web browser and an internet connection. However, students at institutions with limited resources have received relatively little exposure to curricula or professional development opportunities that lead to careers in genomic data science. To broaden participation in genomics research, the scientific community needs to support these programs in local education and research at underserved institutions (UIs). These include community colleges, historically Black colleges and universities, Hispanic-serving institutions, and tribal colleges and universities that support ethnically, racially, and socioeconomically underrepresented students in the United States. We have formed the Genomic Data Science Community Network to support students, faculty, and their networks to identify opportunities and broaden access to genomic data science. These opportunities include expanding access to infrastructure and data, providing UI faculty development opportunities, strengthening collaborations among faculty, recognizing UI teaching and research excellence, fostering student awareness, developing modular and open-source resources, expanding course-based undergraduate research experiences (CUREs), building curriculum, supporting student professional development and research, and removing financial barriers through funding programs and collaborator support. 
    more » « less
  5. To teach STEM content to K-12 students and to recruit talented and diverse K-12 students into STEM, many outreach programs at universities in the United States rely on STEM undergraduates. While the design of such outreach typically focuses on the K-12 students who are taught or recruited, an important but often overlooked consideration is the effect of the outreach on the professional development of the STEM undergraduates themselves. This proposed EAGER project seeks to determine which outreach programs in the United States provided the most transformative professional development of the participating STEM undergraduates. This project then seeks to capture the essence what practices in those programs provided transformative professional development. Next, the project seeks to disseminate these practices to a network of institutions doing outreach. Supporting this project is the NSF EArly-concept Grant for Exploratory Research (EAGER) program. In this first year of the project, we performed a systematic review of literature and university websites with follow-up survey data to identify outreach programs that may be transformative for STEM undergraduates. This review yielded a matrix of about 100 college-based outreach programs. We then invited these programs to attend one of the following workshops: a March workshop held at Tufts University in Boston or an April workshop held at the University of Nebraska in Lincoln. Nine institutions sent representatives to the Boston workshop, and five institutions sent representatives to the Lincoln workshop. In addition, we held conference calls to gather information from an additional six institutions. The purpose of the workshops and conference calls was two-fold: (1) determine best practices for outreach that used STEM undergraduates, and (2) determine what in those programs provided the most transformative development of the participating STEM undergraduates. This paper presents preliminary results from these workshops and conference calls. 
    more » « less