skip to main content


Title: Differential-Geometric-Control Formulation of Flapping Flight Multi-body Dynamics
Flapping flight dynamics is quite an intricate problem that is typically represented by a multi-body, multi-scale, nonlinear, time-varying dynamical system. The unduly simple modeling and analysis of such dynamics in the literature has long obstructed the discovery of some of the fascinating mechanisms that these flapping-wing creatures possess. Neglecting the wing inertial effects and directly averaging the dynamics over the flapping cycle are two major simplifying assumptions that have been extensively used in the literature of flapping flight balance and stability analysis. By relaxing these assumptions and formulating the multi-body dynamics of flapping-wing microair- vehicles in a differential-geometric-control framework, we reveal a vibrational stabilization mechanism that greatly contributes to the body pitch stabilization. The discovered vibrational stabilization mechanism is induced by the interaction between the fast oscillatory aerodynamic loads on the wings and the relatively slow body motion. This stabilizationmechanism provides an artificial stiffness (i.e., spring action) to the body rotation around its pitch axis. Such a spring action is similar to that of Kapitsa pendulum where the unstable inverted pendulum is stabilized through applying fast-enough periodic forcing. Such a phenomenon cannot be captured using the overly simplified modeling and analysis of flapping flight dynamics.  more » « less
Award ID(s):
1709746
PAR ID:
10081738
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Nonlinear Science
ISSN:
0938-8974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Vibrational control is an open loop stabilization technique via the application of highamplitude, high-frequency oscillatory inputs. The averaging theory has been the standard technique for designing vibrational control systems. However, it stipulates too high oscillation frequency that may not be practically feasible. Therefore, although vibrational control is very robust and elegant (stabilization without feedback), it is rarely used in practical applications. The only well-known example is the Kapitza pendulum; an inverted pendulum shose pivot is subject to vertical oscillation. the unstable equilibrium of the inverted pendulum gains asymptotic stability due to the high-frequency oscillation of the pivot. In this paper, we provide a new vibrational control system from Nature; flapping flight dynamics. Flapping flight is a rich dynamical system as a representative model will typically be nonlinear, time-varying, multi-body, multi-time-scale dynamical system. Over the last two decades, using direct averaging, there has been consensus in the flapping flight dynamics community that insects are unstable at the hovering equilibrium due to the lack of pitch stiffness. In this work, we perform higher-order averaging of the time-periodic dynamics of flapping flight to show a vibrational control mechanism due to the oscillation of the driving aerodynamic forces. We also experimentally demonstrate such a phenomenon on a flapping apparatus that has two degrees of freedom: forward translation and pitching motion. It is found that the time-periodic dynamics of the flapping micro-air-vehicle is naturally (without feedback) stabilized beyond a certain threshold. Moreover, if the averaged aerodynamic thrust force is produced by a propeller revolving at a constant speed while maintaining the wings stationary at their mean positions, no stabilization is observed. Hence, it is concluded that the observed stabilization in the flapping system at high frequencies is due to the oscillation of the driving aerodynamic force and, as such, flapping flight indeed enjoys vibrational stabilization. 
    more » « less
  2. Flapping-Wing Micro-Air-Vehicles (FWMAVs) are bio-inspired air vehicles that mimic insect and bird flight. The dynamic behavior of these systems is typically described by a multi-body, multi-time-scale, nonlinear, time-varying dynamical system. Interestingly, this rich dynamics lead to unconventional stabilization mechanisms whose study essentially necessitates a mathematically rigorous analysis. In this paper, we use higherorder averaging, which is based on chronological calculus, to show that insects and their man-made counterparts (FWMAVs) exploit vibrational control to stabilize their body pitching angle. Such an unconventional stabilization cannot be captured by direct averaging. We also experimentally demonstrate such a phenomenon by constructing an experimental setup that allows for two degrees of freedom for the body; forward motion and pitching motion. We measure the response of the body pitching angle using a digital camera and an image processing algorithm at different flapping frequencies. It is found that there is a flapping frequency threshold beyond which the body pitching response is naturally (without feedback) stabilized, which conforms with the vibrational control concept. Moreover, we also construct a replica of the experimental setup with the FWMAV being replaced by a propeller revolving at constant speed, which results in a constant aerodynamic force, leaving no room for vibrational control. The response of the propellersetup is unstable at all frequencies, which also corroborates the fact that the observed stabilization of the FWMAV-setup at high frequencies is a vibrational stabilization phenomenon. 
    more » « less
  3. It is generally accepted among biology and engineering communities that insects are unstable at hover. However, existing approaches that rely on direct averaging do not fully capture the dynamical features and stability characteristics of insect flight. Here, we reveal a passive stabilization mechanism that insects exploit through their natural wing oscillations: vibrational stabilization. This stabilization technique cannot be captured using the averaging approach commonly used in literature. In contrast, it is elucidated using a special type of calculus: the chronological calculus. Our result is supported through experiments on a real hawkmoth subjected to pitch disturbance from hovering. This finding could be particularly useful to biologists because the vibrational stabilization mechanism may also be exploited by many other creatures. Moreover, our results may inspire more optimal designs for bioinspired flying robots by relaxing the feedback control requirements of flight.

     
    more » « less
  4. Flapping wings of insects serve for both generating aerodynamic forces and enhancing olfactory sensitivities when navigating on the odor-rich planet. Despite the extensive investigations of the aerodynamic function of flapping wings, we have limited understanding of how the flapping wings potentially affect the physiological sensitivities during flight. In this paper, direct numerical simulations were used to investigate a fruit fly model in an upwind surging motion. The wing pitch kinematics were prescribed using a hyperbolic function, which can change the wing pitch profile from a sinusoidal function to a step function by adjusting the ā€œCā€ factor in the hyperbolic function. Both aerodynamic performance and olfactory detections were quantified at various wing pitch kinematics patterns. The effects of flapping wings on the odor transport were visualized using the Lagrangian approach by uniformly releasing passive odor tracers in upstream. The study revealed that the insect had the potential to achieve higher aerodynamic performance by tailoring wing pitch kinematics, but it could reduce the odor mass flux around the antenna. It was suspected that the natural flyers might sacrifice certain aerodynamic potential to enhance their olfactory sensitivity for surviving purposes. In addition, a trap-and-flick mechanism is proposed here during the supination phase in order to enhance the olfactory sensitivity. Similar to the clip-and-fling mechanism for enhancing the force generation during the pronation phase, the newly proposed trap-and-flick mechanism is also due to the wing-wing interaction in flapping flight. These findings could provide important implications for engineering applications of odor-guided flapping flight.

     
    more » « less
  5. Abstract Flapping flight of animals has captured the interest of researchers due to their impressive flight capabilities across diverse environments including mountains, oceans, forests, and urban areas. Despite the significant progress made in understanding flapping flight, high-altitude flight as showcased by many migrating animals remains underexplored. At high-altitudes, air density is low, and it is challenging to produce lift. Here we demonstrate a first lift-off of a flapping wing robot in a low-density environment through wing size and motion scaling. Force measurements showed that the lift remained high at 0.14 N despite a 66% reduction of air density from the sea-level condition. The flapping amplitude increased from 148 to 233 degrees, while the pitch amplitude remained nearly constant at 38.2 degrees. The combined effect is that the flapping-wing robot benefited from the angle of attack that is characteristic of flying animals. Our results suggest that it is not a simple increase in the flapping frequency, but a coordinated increase in the wing size and reduction in flapping frequency enables the flight in lower density condition. The key mechanism is to preserve the passive rotations due to wing deformation, confirmed by a bioinspired scaling relationship. Our results highlight the feasibility of flight under a low-density, high-altitude environment due to leveraging unsteady aerodynamic mechanisms unique to flapping wings. We anticipate our experimental demonstration to be a starting point for more sophisticated flapping wing models and robots for autonomous multi-altitude sensing. Furthermore, it is a preliminary step towards flapping wing flight in the ultra-low density Martian atmosphere. 
    more » « less