skip to main content

Title: Pensieve: a Machine Learning Assisted SSD Layer for Extending the Lifetime
As the capacity per unit cost dropping, flash-based SSDs become popular in various computing scenarios. However, the restricted program-erase cycles still severely limit cost- effectiveness of flash-based storage solutions. This paper proposes Pensieve, a machine-learning assisted SSD firmware layer that transparently helps reduce the demand for programs and erases. Pensieve efficiently classifies writing data into different compression categories without hints from software systems. Data with the same category may use a shared dictionary to compress the content, allowing Pensieve to further avoid duplications. As Pensieve does not require any modification in the software stack, Pensieve is compatible with existing applications, file systems and operating systems. With modern SSD architectures, implementing a Pensieve-compliant SSD also requires no additional hardware, providing a drop-in upgrade for existing storage systems. The experimental result on our prototype Pensieve SSD shows that Pensieve can reduce the amount of program operations by 19%, while delivering competitive performance.  more » « less
Award ID(s):
1657039 1940046
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Computer Design
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using flash-based solid state drives (SSDs) as main memory has been proposed as a practical solution towards scaling memory capacity for data-intensive applications. However, almost all existing approaches rely on the paging mechanism to move data between SSDs and host DRAM. This inevitably incurs significant performance overhead and extra I/O traffic. Thanks to the byte-addressability supported by the PCIe interconnect and the internal memory in SSD controllers, it is feasible to access SSDs in both byte and block granularity today. Exploiting the benefits of SSD's byte-accessibility in today's memory-storage hierarchy is, however, challenging as it lacks systems support and abstractions for programs. In this paper, we present FlatFlash, an optimized unified memory-storage hierarchy, to efficiently use byte-addressable SSD as part of the main memory. We extend the virtual memory management to provide a unified memory interface so that programs can access data across SSD and DRAM in byte granularity seamlessly. We propose a lightweight, adaptive page promotion mechanism between SSD and DRAM to gain benefits from both the byte-addressable large SSD and fast DRAM concurrently and transparently, while avoiding unnecessary page movements. Furthermore, we propose an abstraction of byte-granular data persistence to exploit the persistence nature of SSDs, upon which we rethink the design primitives of crash consistency of several representative software systems that require data persistence, such as file systems and databases. Our evaluation with a variety of applications demonstrates that, compared to the current unified memory-storage systems, FlatFlash improves the performance for memory-intensive applications by up to 2.3x, reduces the tail latency for latency-critical applications by up to 2.8x, scales the throughput for transactional database by up to 3.0x, and decreases the meta-data persistence overhead for file systems by up to 18.9x. FlatFlash also improves the cost-effectiveness by up to 3.8x compared to DRAM-only systems, while enhancing the SSD lifetime significantly. 
    more » « less
  2. Preserving the history of storage states is critical to ensuring system reliability and security. It facilitates system functions such as debugging, data recovery, and forensics. Existing software-based approaches like data journaling, logging, and backups not only introduce performance and storage cost, but also are vulnerable to malware attacks, as adversaries can obtain kernel privileges to terminate or destroy them. In this paper, we present Project Almanac, which includes (1) a time-travel solid-state drive (SSD) named TimeSSD that retains a history of storage states in hardware for a window of time, and (2) a toolkit named TimeKits that provides storage-state query and rollback functions. TimeSSD tracks the history of storage states in the hardware device, without relying on explicit backups, by exploiting the property that the flash retains old copies of data when they are updated or deleted. We implement TimeSSD with a programmable SSD and develop TimeKits for several typical system applications. Experiments, with a variety of real-world case studies, demonstrate that TimeSSD can retain all the storage states for eight weeks, with negligible performance overhead, while providing the device-level time-travel property. 
    more » « less
  3. NAND flash-based Solid State Devices (SSDs) offer the desirable features of high performance, energy efficiency, and fast growing capacity. Thus, the use of SSDs is increasing in distributed storage systems. A key obstacle in this context is that the natural unbalance in distributed I/O workloads can result in wear imbalance across the SSDs in a distributed setting. This, in turn can have significant impact on the reliability, performance, and lifetime of the storage deployment. Extant load balancers for storage systems do not consider SSD wear imbalance when placing data, as the main design goal of such balancers is to extract higher performance. Consequently, data migration is the only common technique for tackling wear imbalance, where existing data is moved from highly loaded servers to the least loaded ones. In this paper, we explore an innovative holistic approach, Chameleon, that employs data redundancy techniques such as replication and erasure-coding, coupled with endurance-aware write offloading, to mitigate wear level imbalance in distributed SSD-based storage. Chameleon aims to balance the wear among different flash servers while meeting desirable objectives of: extending life of flash servers; improving I/O performance; and avoiding bottlenecks. Evaluation with a 50 node SSD cluster shows that Chameleon reduces the wear distribution deviation by 81% while improving the write performance by up to 33%. 
    more » « less
  4. Flash-based storage is replacing disk for an increasing number of data center applications, providing orders of magnitude higher throughput and lower average latency. However, applications also require predictable storage latency. Existing Flash devices fail to provide low tail read latency in the presence of write operations. We propose two novel techniques to address SSD read tail latency, including Redundant Array of Independent LUNs (RAIL) which avoids serialization of reads behind user writes as well as latency-aware hot-cold separation (HC) which improves write throughput while maintaining low tail latency. RAIL leverages the internal parallelism of modern Flash devices and allocates data and parity pages to avoid reads getting stuck behind writes. We implement RAIL in the Linux Kernel as part of the LightNVM Flash translation layer and show that it can reduce read tail latency by 7× at the 99.99th percentile, while reducing relative bandwidth by only 33%. 
    more » « less
  5. Current hardware and application storage trends put immense pressure on the operating system's storage subsystem. On the hardware side, the market for storage devices has diversified to a multi-layer storage topology spanning multiple orders of magnitude in cost and performance. Above the file system, applications increasingly need to process small, random IO on vast data sets with low latency, high throughput, and simple crash consistency. File systems designed for a single storage layer cannot support all of these demands together. We present Strata, a cross-media file system that leverages the strengths of one storage media to compensate for weaknesses of another. In doing so, Strata provides performance, capacity, and a simple, synchronous IO model all at once, while having a simpler design than that of file systems constrained by a single storage device. At its heart, Strata uses a log-structured approach with a novel split of responsibilities among user mode, kernel, and storage layers that separates the concerns of scalable, high-performance persistence from storage layer management. We quantify the performance benefits of Strata using a 3-layer storage hierarchy of emulated NVM, a flash-based SSD, and a high-density HDD. Strata has 20-30% better latency and throughput, across several unmodified applications, compared to file systems purpose-built for each layer, while providing synchronous and unified access to the entire storage hierarchy. Finally, Strata achieves up to 2.8x better throughput than a block-based 2-layer cache provided by Linux's logical volume manager. 
    more » « less