skip to main content


Title: GProM - A Swiss Army Knife for Your Provenance Needs
We present an overview of GProM, a generic provenance middleware for relational databases. The sys- tem supports diverse provenance and annotation management tasks through query instrumentation, i.e., compiling a declarative frontend language with provenance-specific features into the query language of a backend database system. In addition to introducing GProM, we also discuss research contributions related to GProM including the first provenance model and capture mechanism for transaction prove- nance, a unified framework for answering why- and why-not provenance questions, and provenance- aware query optimization. Furthermore, by means of the example of post-mortem debugging of transac- tions, we demonstrate how novel applications of provenance are made possible by GProM.  more » « less
Award ID(s):
1640864
NSF-PAR ID:
10082097
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
A Quarterly bulletin of the Computer Society of the IEEE Technical Committee on Data Engineering
Volume:
41
Issue:
1
ISSN:
1053-1238
Page Range / eLocation ID:
51-62
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Explaining why an answer is (or is not) returned by a query is important for many applications including auditing, debugging data and queries, and answering hypothetical questions about data. In this work, we present the first practical approach for answering such questions for queries with negation (first-order queries). Specifically, we introduce a graph-based provenance model that, while syntactic in nature, supports reverse reasoning and is proven to encode a wide range of provenance models from the literature. The implementation of this model in our PUG (Provenance Unification through Graphs) system takes a provenance question and Datalog query as an input and generates a Datalog program that computes an explanation, i.e., the part of the provenance that is relevant to answer the question. Furthermore, we demonstrate how a desirable factorization of provenance can be achieved by rewriting an input query. We experimentally evaluate our approach demonstrating its efficiency. 
    more » « less
  2. Systematically reasoning about the fine-grained causes of events in a real-world distributed system is challenging. Causality, from the distributed systems literature, can be used to compute the causal history of an arbitrary event in a distributed system, but the event's causal history is an over-approximation of the true causes. Data provenance, from the database literature, precisely describes why a particular tuple appears in the output of a relational query, but data provenance is limited to the domain of static relational databases. In this paper, we present wat-provenance: a novel form of provenance that provides the benefits of causality and data provenance. Given an arbitrary state machine, wat-provenance describes why the state machine produces a particular output when given a particular input. This enables system developers to reason about the causes of events in real-world distributed systems. We observe that automatically extracting the wat-provenance of a state machine is often infeasible. Fortunately, many distributed systems components have simple interfaces from which a developer can directly specify wat-provenance using a technique we call wat-provenance specifications. Leveraging the theoretical foundations of wat-provenance, we implement a prototype distributed debugging framework called Watermelon. 
    more » « less
  3. null (Ed.)
    In many data analysis applications there is a need to explain why a surprising or interesting result was produced by a query. Previous approaches to explaining results have directly or indirectly relied on data provenance, i.e., input tuples contributing to the result(s) of interest. However, some information that is relevant for explaining an answer may not be contained in the provenance. We propose a new approach for explaining query results by augmenting provenance with information from other related tables in the database. Using a suite of optimization techniques, we demonstrate experimentally using real datasets and through a user study that our approach produces meaningful results and is efficient. 
    more » « less
  4. We present the first query-based approach for explaining missing answers to queries over nested relational data which is a common data format used by big data systems such as Apache Spark. Our main contributions are a novel way to define query-based why-not provenance based on repairs to queries and presenting an implementation and preliminary experiments for answering such queries in Spark. 
    more » « less
  5. null (Ed.)
    Semiring provenance is a successful approach, originating in database theory, to providing detailed information on how atomic facts combine to yield the result of a query. In particular, general provenance semirings of polynomials or formal power series provide precise descriptions of the evaluation strategies or “proof trees” for the query. By evaluating these descriptions in specific application semirings, one can extract practical information for instance about the confidence of a query or the cost of its evaluation. This paper develops semiring provenance for very general logical languages featuring the full interaction between negation and fixed-point inductions or, equivalently, arbitrary interleavings of least and greatest fixed points. This also opens the door to provenance analysis applications for modal μ-calculus and temporal logics, as well as for finite and infinite model-checking games. Interestingly, the common approach based on Kleene’s Fixed-Point Theorem for ω-continuous semirings is not sufficient for these general languages. We show that an adequate framework for the provenance analysis of full fixed-point logics is provided by semirings that are (1) fully continuous, and (2) absorptive. Full continuity guarantees that provenance values of least and greatest fixed-points are well-defined. Absorptive semirings provide a symmetry between least and greatest fixed-points and make sure that provenance values of greatest fixed points are informative. We identify semirings of generalized absorptive polynomials S∞[X] and prove universal properties that make them the most general appropriate semirings for our framework. These semirings have the further property of being (3) chain-positive, which is responsible for having truth-preserving interpretations that give non-zero values to all true formulae. We relate the provenance analysis of fixed-point formulae with provenance values of plays and strategies in the associated model-checking games. Specifically, we prove that the provenance value of a fixed point formula gives precise information on the evaluation strategies in these games. 
    more » « less