Abstract Charge density waves (CDWs) in the cuprate high-temperature superconductors have evoked much interest, yet their typical short-range nature has raised questions regarding the role of disorder. Here we report a resonant X-ray diffraction study of ZrTe$${}_{3}$$ , a model CDW system, with focus on the influence of disorder. Near the CDW transition temperature, we observe two independent signals that arise concomitantly, only to become clearly separated in momentum while developing very different correlation lengths in the well-ordered state that is reached at a distinctly lower temperature. Anomalously slow dynamics of mesoscopic charge domains are further found near the transition temperature, in spite of the expected strong thermal fluctuations. Our observations signify the presence of distinct experimental fingerprints of pristine and disorder-perturbed CDWs. We discuss the latter also in the context of Friedel oscillations, which we argue might promote CDW formation via a self-amplifying process.
more »
« less
Imaging electron-density fluctuations by multidimensional X-ray photon-coincidence diffraction
The ultrafast spontaneous electron-density fluctuation dynamics in molecules is studied theoretically by off-resonant multiple X-ray diffraction events. The time- and wavevector-resolved photon-coincidence signals give an image of electron-density fluctuations expressed through the four-point correlation function of the charge density in momentum space. A Fourier transform of the signal provides a real-space image of the multipoint charge-density correlation functions, which reveal snapshots of the evolving electron density in between the diffraction events. The proposed technique is illustrated by ab initio simulations of the momentum- and real-space inelastic scattering signals from a linear cyanotetracetylene molecule.
more »
« less
- Award ID(s):
- 1663822
- PAR ID:
- 10082159
- Publisher / Repository:
- Proceedings of the National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 116
- Issue:
- 2
- ISSN:
- 0027-8424
- Page Range / eLocation ID:
- p. 395-400
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a phase-space electronic Hamiltonian ĤPS (parameterized by both nuclear position X and momentum P) that boosts each electron into the moving frame of the nuclei that are closest in real space. The final form for the phase space Hamiltonian does not assume the existence of an atomic orbital basis, and relative to standard Born–Oppenheimer theory, the newly proposed one-electron operators can be expressed directly as functions of electronic and nuclear positions and momentum. We show that (i) quantum–classical dynamics along such a Hamiltonian maintains momentum conservation and that (ii) diagonalizing such a Hamiltonian can recover the electronic momentum and electronic current density reasonably well. In conjunction with other reports in the literature that such a phase-space approach can also recover vibrational circular dichroism spectra, we submit that the present phase-space approach offers a testable and powerful approach to post-BO electronic structure theory. Moreover, the approach is inexpensive and can be immediately applied to simulations of chiral induced spin selectivity experiments (where the transfer of angular momentum between nuclei and electrons is considered critical).more » « less
-
null (Ed.)An exciton, a two-body composite quasiparticle formed of an electron and hole, is a fundamental optical excitation in condensed matter systems. Since its discovery nearly a century ago, a measurement of the excitonic wave function has remained beyond experimental reach. Here, we directly image the excitonic wave function in reciprocal space by measuring the momentum distribution of electrons photoemitted from excitons in monolayer tungsten diselenide. By transforming to real space, we obtain a visual of the distribution of the electron around the hole in an exciton. Further, by also resolving the energy coordinate, we confirm the elusive theoretical prediction that the photoemitted electron exhibits an inverted energy-momentum dispersion relationship reflecting the valence band where the partner hole remains, rather than that of conduction band states of the electron.more » « less
-
A charge density wave (CDW) is a phase of matter characterized by a periodic modulation of the valence electron density accompanied by a distortion of the lattice structure. The microscopic details of CDW formation are closely tied to the dynamic charge susceptibility, χ(q, ω), which describes the behavior of electronic collective modes. Despite decades of extensive study, the behavior of χ(q, ω) in the vicinity of a CDWtransition has never been measured with high energy resolution (∼meV). Here, we investigate the canonical CDW transition in ErTe3 using momentum-resolved electron energy loss spectroscopy (M-EELS), a technique uniquely sensitive to valence band charge excitations. Unlike phonons in these materials, which undergo conventional softening due to the Kohn anomaly at the CDW wavevector, the electronic excitations display purely relaxational dynamics that are well described by a diffusive model. The diffusivity peaks around 250 K, just below the critical temperature. Additionally, we report, for the first time, a divergence in the real part of χ(q, ω) in the static limit (ω → 0), a phenomenon predicted to characterize CDWs since the 1970s. These results highlight the importance of energy- and momentum-resolved measurements of electronic susceptibility and demonstrate the power of M-EELS as a versatile probe of charge dynamics in materials.more » « less
-
Using X-ray free-electron lasers (XFELs), it is possible to determine three-dimensional structures of nanoscale particles using single-particle imaging methods. Classification algorithms are needed to sort out the single-particle diffraction patterns from the large amount of XFEL experimental data. However, different methods often yield inconsistent results. This study compared the performance of three classification algorithms: convolutional neural network, graph cut and diffusion map manifold embedding methods. The identified single-particle diffraction data of the PR772 virus particles were assembled in the three-dimensional Fourier space for real-space model reconstruction. The comparison showed that these three classification methods lead to different datasets and subsequently result in different electron density maps of the reconstructed models. Interestingly, the common dataset selected by these three methods improved the quality of the merged diffraction volume, as well as the resolutions of the reconstructed maps.more » « less
An official website of the United States government
