Three-dimensional learning (3DL) is an approach to science instruction that was developed for K-12 science education and that can provide guidance for improving undergraduate physics laboratories. In this paper, we describe efforts to comprehensively integrate 3DL into a sequence of undergraduate introductory physics for life sciences (IPLS) laboratory courses. This paper is tailored for introductory physics faculty interested in advancing their course's learning goals by simultaneously engaging students in experimental practices, scientific reasoning, and conceptual knowledge. We first review how several well-known laboratory curricula are already implicitly aligned with 3DL. We then describe our IPLS course sequence and show how each 3DL dimension—science and engineering practices, disciplinary core ideas, and crosscutting concepts—is integrated throughout the curriculum. To support implementation, we provide samples of our course documentation, a detailed account of our 3DL integration efforts, a guide to training and supporting teaching and learning assistants in a 3DL course, and a sample set of activities to guide students in participating in 3DL instruction in the supplementary material.
more »
« less
Case study on how to develop 3D labs with theoretical, experimental, and computational goals
Overhauling a laboratory experiment, course, or curriculum is a daunting process. Here, I describe a four-step process our department used to overhaul our laboratory curriculum and courses. This four-step process includes: 1) identifying learning goals, 2) describing current practices, 3) making changes, and 4) planning for assessment. In addition, I describe how we updated experiments in the courses to be “3D”. These “3D” experiments are designed to meet three different types of goals: theoretical goals, experimental goals, and computational goals.
more »
« less
- Award ID(s):
- 1653501
- PAR ID:
- 10082358
- Date Published:
- Journal Name:
- 2018 Conference on Laboratory Instruction Beyond the First Year of College
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In contrast to the dynamic treatment of other aspects of the curriculum, and despite being at the center of chemical engineering education, laboratory experiments have remained largely unchanged for decades. To characterize the potential impact changes to laboratory courses could have, we explored student perceptions across a department and characterized the kinds of opportunities students have to use their agency in these courses across universities. We used a survey to measure students’ sense of agency across several laboratory courses in a chemical engineering department. We found students in laboratory courses across the chemical engineering laboratory sequence, including those engaged in authentic course-based research did not perceive the experiments as agentive or authentic. We infer students draw upon abundant low-agency experiences in laboratory experiments. We report on the agency that instructors report students possessing across two chemical engineering departments to understand variation across institutions. Maximizing learning in laboratory courses may hinge on clearer communication about authentic experiments or systematic redesign of earlier courses.more » « less
-
Abstract Transcription is the critical first step in expressing a gene, during which an RNA polymerase (RNAP) synthesizes an RNA copy of one strand of the DNA that encodes a gene. Here we describe a laboratory experiment that uses a single assay to probe two important steps in transcription: (1) RNAP binding to DNA, and (2) the transcriptional activity of the polymerase. Students probe both these steps in a single experiment using a fluorescence‐based electrophoretic mobility shift assay (EMSA) and commercially availableEscherichia coliRNAP. As an inquiry‐driven component, students add the transcriptional inhibitor rifampicin to reactions and draw conclusions about its mechanism of inhibition by determining whether it blocks polymerase binding to DNA or transcriptional activity. Depending on the curriculum and learning goals of individual courses, this experimental module could be easily expanded to include additional experimentation that mimics a research environment more closely. After completing the experiment students understand basic principles of transcription, mechanisms of inhibition, and the use of EMSAs to probe protein/DNA interactions.more » « less
-
There is a lack of access to critical knowledge on machine ethics and the impacts of technology on individuals and communities in everyday life. This project pioneers an inclusive curriculum design process to broaden accessibility to machine ethics education. Our approach uses a ''source'' course to develop materials for seven "target" courses. The source course is a machine ethics curriculum development course in which students and faculty collaboratively build curricular materials for integration into non-computer science courses. Here we describe the development of the ''source'' course using a curriculum co-creation process that leverages student and faculty expertise. The process emphasizes an inclusive design approach, rooted in continuous stakeholder feedback and consistent, transparent communication. The products of this process include course materials that incorporate underrepresented ethical frameworks. Additionally, it features peer-reviewed journal assignments that promote reflective learning and sharing of diverse perspectives, as well as a final module project in which students collaborate with faculty to co-create curricular materials. Our approach aims to broaden a culturally relevant understanding of ethical challenges in technology while ensuring that the curriculum resonates with diverse student backgrounds. Our presentation will describe key insights about the process and products of our curriculum design.more » « less
-
null (Ed.)Research-based assessment instruments (RBAIs) are essential tools to measure aspects of student learning and improve pedagogical practice. RBAIs are designed to measure constructs related to a well-defined learning goal. However, relatively few RBAIs exist that are suitable for the specific learning goals of upper-division physics lab courses. One such learning goal is modeling, the process of constructing, testing, and refining models of physical and measurement systems. Here, we describe the creation of one component of an RBAI to measure proficiency with modeling. The RBAI is called the Modeling Assessment for Physics Laboratory Experiments (MAPLE). For use with large numbers of students, MAPLE must be scalable, which includes not requiring impractical amounts of labor to analyze its data as is often the case with large free-response assessments. We, therefore, use the coupled multiple response (CMR) format, from which data can be analyzed by a computer, to create items for measuring student reasoning in this component of MAPLE.We describe the process we used to create a set of CMR items for MAPLE, provide an example of this process for an item, and lay out an argument for construct validity of the resulting items based on our process.more » « less
An official website of the United States government

