skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability
Mass loss from the Amundsen Sea sector of the West Antarctic Ice Sheet has increased in recent decades, suggestive of sus- tained ocean forcing or an ongoing, possibly unstable, response to a past climate anomaly. Lengthening satellite records appear to be incompatible with either process, however, revealing both periodic hiatuses in acceleration and intermittent episodes of thinning. Here we use ocean temperature, salinity, dissolved-oxygen and current measurements taken from 2000 to 2016 near the Dotson Ice Shelf to determine temporal changes in net basal melting. A decadal cycle dominates the ocean record, with melt changing by a factor of about four between cool and warm extremes via a nonlinear relationship with ocean temperature. A warm phase that peaked around 2009 coincided with ice-shelf thinning and retreat of the grounding line, which re-advanced during a post-2011 cool phase. These observations demonstrate how discontinuous ice retreat is linked with ocean variability, and that the strength and timing of decadal extremes is more influential than changes in the longer-term mean state. The non- linear response of melting to temperature change heightens the sensitivity of Amundsen Sea ice shelves to such variability, possibly explaining the vulnerability of the ice sheet in that sector, where subsurface ocean temperatures are relatively high.  more » « less
Award ID(s):
1644159 0632282
PAR ID:
10082427
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature geoscience
ISSN:
1752-0908
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Observations of rapid ongoing grounding line retreat, ice shelf thinning and accelerated ice flow from the West Antarctic Ice Sheet (WAIS) may forebode a possible collapse if global temperatures continue to increase. Understanding and reconstructing West Antarctic Ice Sheet dynamics in past warmer-than-present times will inform about its behavior as an analogue for future climate scenarios. International Ocean Discovery Program (IODP) Expedition 379 visited the Amundsen Sea sector of Antarctica to obtain geological records suitable for this purpose. During the expedition, cores from two drill sites at the Resolution Drift on the continental rise returned sediments whose deposition was possibly influenced by West Antarctic Ice Sheet dynamics from late Miocene to Holocene times. To examine the West Antarctic Ice Sheet dynamics, shipboard physical properties and sedimentological data are correlated with seismic data and extrapolated across the Resolution Drift via core-log-seismic integration. An interval with strongly variable physical properties, high diatom abundance and ice-rafted debris occurrence, correlating with partially high amplitude seismic reflection characteristics was identified between 4.2 and 3.2 Ma. Sedimentation during this interval is interpreted as having occurred during an extended warm period with a dynamic West Antarctic Ice Sheet in the Amundsen Sea sector. These records compare to those of other drill sites in the Ross Sea and the Bellingshausen Sea, and thus suggest an almost simultaneous occurrence of extended warm periods in all three locations. 
    more » « less
  2. Abstract

    Major ice loss in the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS) is hypothesized to have triggered ice sheet collapses during past warm periods such as those in the Pliocene. International Ocean Discovery Program (IODP) Expedition 379 recovered continuous late Miocene to Holocene sediments from a sediment drift on the continental rise, allowing assessment of sedimentation processes in response to climate cycles and trends since the late Miocene. Via seismic correlation to the shelf, we interpret massive prograding sequences that extended the outer shelf by 80 km during the Pliocene through frequent advances of grounded ice. Buried grounding zone wedges indicate prolonged periods of ice‐sheet retreat, or even collapse, during an extended mid‐Pliocene warm period from ∼4.2–3.2 Ma inferred from Expedition 379 records. These results indicate that the WAIS was highly dynamic during the Pliocene and major retreat events may have occurred along the Amundsen Sea margin.

     
    more » « less
  3. The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales. 
    more » « less
  4. Understanding the drivers of surface melting in West Antarctica is crucial for understanding future ice loss and global sea level rise. This study identifies atmospheric drivers of surface melt on West Antarctic ice shelves and ice sheet margins and relationships with tropical Pacific and high-latitude climate forcing using multidecadal reanalysis and satellite datasets. Physical drivers of ice melt are diagnosed by comparing satellite-observed melt patterns to anomalies of reanalysis near-surface air temperature, winds, and satellite-derived cloud cover, radiative fluxes, and sea ice concentration based on an Antarctic summer synoptic climatology spanning 1979–2017. Summer warming in West Antarctica is favored by Amundsen Sea (AS) blocking activity and a negative phase of the southern annular mode (SAM), which both correlate with El Niño conditions in the tropical Pacific Ocean. Extensive melt events on the Ross–Amundsen sector of the West Antarctic Ice Sheet (WAIS) are linked to persistent, intense AS blocking anticyclones, which force intrusions of marine air over the ice sheet. Surface melting is primarily driven by enhanced downwelling longwave radiation from clouds and a warm, moist atmosphere and by turbulent mixing of sensible heat to the surface by föhn winds. Since the late 1990s, concurrent with ocean-driven WAIS mass loss, summer surface melt occurrence has increased from the Amundsen Sea Embayment to the eastern Ross Ice Shelf. We link this change to increasing anticyclonic advection of marine air into West Antarctica, amplified by increasing air–sea fluxes associated with declining sea ice concentration in the coastal Ross–Amundsen Seas.

     
    more » « less
  5. Abstract

    West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.

     
    more » « less