skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improving SAT-based Bounded Model Checking for Existential CTL through Path Reuse
A complementary technique to decision-diagram-based model checking is SAT-based bounded model checking (BMC), which reduces the model checking problem to a propositional satisfiability problem so that the corresponding formula is satisfiable iff a counterexample or witness exists. Due to the branching time nature of computation tree logic (CTL), BMC for the universal fragment of CTL (ACTL) considers a counterexample in a bounded model as a set of bounded paths. Since the existential fragment of CTL (ECTL) is dual to ACTL, and ACTL formulas are often negated to obtain ECTL ones in practice, we focus on BMC for ECTL and propose an improved translation that generates a possibly smaller propositional formula by reducing the number of bounded paths to be considered in a witness. Experimental results show that the formulas generated by our approach are often easier for a SAT solver to answer. In addition, we propose a simple modification to the translation so that it is also defined for models with deadlock states.  more » « less
Award ID(s):
1642397
PAR ID:
10082432
Author(s) / Creator(s):
;
Date Published:
Journal Name:
EPiC Series in Computing
Volume:
57
ISSN:
2398-7340
Page Range / eLocation ID:
471 to 453
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Formal verification of cyber-physical systems (CPS) is challenging because it has to consider real-time and concurrency aspects that are often absent in ordinary software. Moreover, the software in CPS is often complex and low-level, making it hard to assure that a formal model of the system used for verification is a faithful representation of the actual implementation, which can undermine the value of a verification result. To address this problem, we propose a methodology for building verifiable CPS based on the principle that a formal model of the software can be derivedautomaticallyfrom its implementation. Our approach requires that the system implementation is specified inLingua Franca(LF), a polyglot coordination language tailored for real-time, concurrent CPS, which we made amenable to the specification of safety properties via annotations in the code. The program structure and the deterministic semantics of LF enable automatic construction of formal axiomatic models directly from LF programs. The generated models are automatically checked using Bounded Model Checking (BMC) by the verification engineUclid5using theZ3SMT solver. The proposed technique enables checking a well-defined fragment of Safety Metric Temporal Logic (Safety MTL) formulas. To ensure the completeness of BMC, we present a method to derive an upper bound on the completeness threshold of an axiomatic model based on the semantics of LF. We implement our approach in the LF Verifierand evaluate it using a benchmark suite with 22 programs sampled from real-life applications and benchmarks for Erlang, Lustre, actor-oriented languages, and RTOSes. The LF Verifiercorrectly checks 21 out of 22 programs automatically. 
    more » « less
  2. null (Ed.)
    Robust Linear Temporal Logic (rLTL) was crafted to incorporate the notion of robustness into Linear-time Temporal Logic (LTL) specifications. Technically, robustness was formalized in the logic rLTL via 5 different truth values and it led to an increase in the time complexity of the associated model checking problem. In general, model checking an rLTL formula relies on constructing a generalized Büchi automaton of size 5^|φ| where |φ| denotes the length of an rLTL formula φ. It was recently shown that the size of this automaton can be reduced to 3^|φ| (and even smaller) when the formulas to be model checked come from a fragment of rLTL. In this paper, we introduce Evrostos, the first tool for model checking formulas in this fragment. We also present several empirical studies, based on models and LTL formulas reported in the literature, confirming that rLTL model checking for the aforementioned fragment incurs in a time overhead that makes the verification of rLTL practical. 
    more » « less
  3. An advantage of model checking is its ability to generate witnesses or counterexamples. Approaches exist to generate small or minimum witnesses for simple unnested formulas, but no existing method guarantees minimality for general nested ones. Here, we give a definition of witness size, use edge-valued decision diagrams to recursively compute the minimum witness size for each subformula, and describe a general approach to build minimum tree-like witnesses for existential CTL. Experimental results show that for some models, our approach is able to generate minimum witnesses while the traditional approach is not. 
    more » « less
  4. Despite being a quintessential example of a hard problem, the quest for finding fast algorithms for deciding satisfiability of propositional formulas has occupied computer scientists both in theory and in practice. In this article, we survey recent progress on designing algorithms with strong refutation guarantees forsmoothedinstances of the k -SAT problem. Smoothed instances are formed by slight random perturbations of arbitrary instances, and their study is a way to bridge the gap between worst-case and average-case models of problem instances. Our methods yield new algorithms for smoothed k -SAT instances with guarantees that match those for the significantly simpler and well-studied model ofrandomformulas. Additionally, they have led to a novel and unexpected line of attack on some longstanding extremal combinatorial problems in graph theory and coding theory. As an example, we will discuss the resolution of a 2008 conjecture of Feige on the existence of short cycles in hypergraphs. 
    more » « less
  5. We introduce proof systems for propositional logic that admit short proofs of hard formulas as well as the succinct expression of most techniques used by modern SAT solvers. Our proof systems allow the derivation of clauses that are not necessarily implied, but which are redundant in the sense that their addition preserves satisfiability. To guarantee that these added clauses are redundant, we consider various efficiently decidable redundancy criteria which we obtain by first characterizing clause redundancy in terms of a semantic implication relationship and then restricting this relationship so that it becomes decidable in polynomial time. As the restricted implication relation is based on unit propagation---a core technique of SAT solvers---it allows efficient proof checking too. The resulting proof systems are surprisingly strong, even without the introduction of new variables---a key feature of short proofs presented in the proof-complexity literature. We demonstrate the strength of our proof systems on the famous pigeon hole formulas by providing short clausal proofs without new variables. 
    more » « less