skip to main content


Title: Nanostructured interfaces for probing and facilitating extracellular electron transfer
Extracellular electron transfer (EET) is a process performed by electrochemically active bacteria (EAB) to transport metabolically-generated electrons to external solid-phase acceptors through specific molecular pathways. Naturally bridging biotic and abiotic charge transport systems, EET offers ample opportunities in a wide range of bio-interfacing applications, from renewable energy conversion, resource recovery, to bioelectronics. Full exploration of EET fundamentals and applications demands technologies that could seamlessly interface and interrogate with key components and processes at relevant length scales. In this review, we will discuss the recent development of nanoscale platforms that enabled EET investigation from single-cell to network levels. We will further overview research strategies for utilizing rationally designed and integrated nanomaterials for EET facilitation and efficiency enhancement. In the future, EET components such as c -cytochrome based outer membranes and bacterial nanowires along with their assembled structures will present themselves as a whole new category of biosynthetic electroactive materials with genetically encoded functionality and intrinsic biocompatibility, opening up possibilities to revolutionize the way electronic devices communicate with biological systems.  more » « less
Award ID(s):
1652095
NSF-PAR ID:
10082450
Author(s) / Creator(s):
 ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
Volume:
6
Issue:
44
ISSN:
2050-750X
Page Range / eLocation ID:
7144 to 7158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neutrophilic Fe(II) oxidizing bacteria play an important role in biogeochemical processes and have also received attention for multiple technological applications. These micro-organisms are thought to couple their metabolism with extracellular electron transfer (EET) while oxidizing Fe(II) as electron donor outside the cell. Sideroxydans lithotrophicus ES-1 is a freshwater chemolithoautotrophic Fe(II) oxidizing bacterium that is challenging to culture and not yet genetically tractable. Analysis of the S. lithotrophicus ES-1 genome predicts multiple EET pathways, which are proposed to be involved in Fe(II) oxidation, but not yet validated. Here we expressed components of two of the proposed EET pathways, including the Mto and Slit_0867–0870 PCC3 pathways , from S. lithotrophicus ES-1 into Aeromonas hydrophila , an established model EET organism. We demonstrate that combinations of putative inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways partially complemented EET activity in Aeromonas mutants lacking native components. Our results provide evidence for electron transfer functionality and interactions of inner membrane and periplasmic components from the Mto and Slit_0867–0870 PCC3 pathways. Based on these findings, we suggest that EET in S. lithotrophicus ES-1 could be more complicated than previously considered and raises questions regarding directionality of these electron transfer pathways. 
    more » « less
  2. Abstract

    Organic electrochemical transistors (OECTs) are ideal devices for translating biological signals into electrical readouts and have applications in bioelectronics, biosensing, and neuromorphic computing. Despite their potential, developing programmable and modular methods for living systems to interface with OECTs has proven challenging. Here we describe hybrid OECTs containing the model electroactive bacteriumShewanella oneidensisthat enable the transduction of biological computations to electrical responses. Specifically, we fabricated planar p-type OECTs and demonstrated that channel de-doping is driven by extracellular electron transfer (EET) fromS. oneidensis. Leveraging this mechanistic understanding and our ability to control EET flux via transcriptional regulation, we used plasmid-based Boolean logic gates to translate biological computation into current changes within the OECT. Finally, we demonstrated EET-driven changes to OECT synaptic plasticity. This work enables fundamental EET studies and OECT-based biosensing and biocomputing systems with genetically controllable and modular design elements.

     
    more » « less
  3. Excitation energy transfer (EET) is fundamental to many processes in chemical and biological systems and carries significant implications for the design of materials suitable for efficient solar energy harvest and transport. This review discusses the role of intramolecular vibrations on the dynamics of EET in nonbonded molecular aggregates of bacteriochlorophyll, a perylene bisimide, and a model system, based on insights obtained from fully quantum mechanical real-time path integral results for a Frenkel exciton Hamiltonian that includes all vibrational modes of each molecular unit at finite temperature. Generic trends, as well as features specific to the vibrational characteristics of the molecules, are identified. Weak exciton-vibration (EV) interaction leads to compact, near-Gaussian densities on each electronic state, whose peak follows primarily a classical trajectory on a torus, while noncompact densities and nonlinear peak evolution are observed with strong EV coupling. Interaction with many intramolecular modes and increasing aggregate size smear, shift, and damp these dynamical features. 
    more » « less
  4. Abstract

    Extracellular electron transfer (EET) via microbial nanowires drives globally-important environmental processes and biotechnological applications for bioenergy, bioremediation, and bioelectronics. Due to highly-redundant and complex EET pathways, it is unclear how microbes wire electrons rapidly (>106 s−1) from the inner-membrane through outer-surface nanowires directly to an external environment despite a crowded periplasm and slow (<105 s−1) electron diffusion among periplasmic cytochromes. Here, we show thatGeobacter sulfurreducensperiplasmic cytochromes PpcABCDE inject electrons directly into OmcS nanowires by binding transiently with differing efficiencies, with the least-abundant cytochrome (PpcC) showing the highest efficiency. Remarkably, this defined nanowire-charging pathway is evolutionarily conserved in phylogenetically-diverse bacteria capable of EET. OmcS heme reduction potentials are within 200 mV of each other, with a midpoint 82 mV-higher than reported previously. This could explain efficient EET over micrometres at ultrafast (<200 fs) rates with negligible energy loss. Engineering this minimal nanowire-charging pathway may yield microbial chassis with improved performance.

     
    more » « less
  5. Abstract

    Renazzo‐type (CR) carbonaceous chondrites belong to one of the most pristine meteorite groups containing various early solar system components such as matrix and fine‐grained rims (FGRs), whose formation mechanisms are still debated. Here, we have investigated FGRs of three Antarctic CR chondrites (GRA 95229, MIL 07525, and EET 92161) by electron microscopy techniques. We specifically focused on the abundances and chemical compositions of the amorphous silicates within the rims and matrix by analytical transmission electron microscopy. Comparison of the amorphous silicate composition to a matrix area of GRA 95229 clearly shows a compositional relationship between the matrix and the fine‐grained rim, such as similar Mg/Si and Fe/Si ratios. This relationship and the abundance of the amorphous silicates in the rims strengthen a solar nebular origin and rule out a primary formation mechanism by parent body processes such as chondrule erosion. Moreover, our chemical analyses of the amorphous silicates and their abundance indicate that the CR rims experienced progressive alteration stages. According to our analyses, the GRA 95229 sample is the least altered one based on its high modal abundance of amorphous silicates (31%) and close‐to‐chondritic Fe/Si ratios, followed by MIL 07525 and finally EET 92161 with lesser amounts of amorphous silicates (12% and 5%, respectively) and higher Fe/Si ratios. Abundances and chemical compositions of amorphous silicates within matrix and rims are therefore suitable recorders to track different alteration stages on a submicron scale within variably altered CR chondrites.

     
    more » « less