skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Title: Systematic Comparison of the Influence of Cool Wall versus Cool Roof Adoption on Urban Climate in the Los Angeles Basin
Award ID(s):
1752522 1512429
NSF-PAR ID:
10082497
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
Volume:
52
Issue:
19
ISSN:
0013-936X
Page Range / eLocation ID:
11188 to 11197
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Heat islands and warming temperatures are a growing global public health concern. Although cities are implementing cooling interventions, little is known about their efficacy. We conducted a literature review of field studies measuring the impact of urban cooling interventions, focusing on cooling centers, misting stations, cool pavements, and cool or green roofs. A total of 23 articles met the inclusion criteria. Studies of cooling centers measured the potential impact, based on evaluations of population proximity and heat-vulnerable populations. Reductions in temperature were reported for misting stations and cool pavements across a range of metrics. Misting station use was evaluated with temperature changes and user questionnaires. The benefits and disadvantages of each intervention are presented, and metrics for evaluating cooling interventions are compared. Gaps in the literature include a lack of measured impacts on personal thermal comfort, limited documentation on intervention costs, the need to standardize temperature metrics, and evaluation criteria.

     
    more » « less
  2. ABSTRACT

    Detailed chemical studies of F/G/K – or solar-type – stars have long been routine in stellar astrophysics, enabling studies in both Galactic chemodynamics and exoplanet demographics. However, similar understanding of the chemistry of M and late-K dwarfs – the most common stars in the Galaxy – has been greatly hampered both observationally and theoretically by the complex molecular chemistry of their atmospheres. Here, we present a new implementation of the data-driven Cannon model, modelling Teff, log g, [Fe/H], and [Ti/Fe] trained on low–medium resolution optical spectra (4000–7000  Å) from 103 cool dwarf benchmarks. Alongside this, we also investigate the sensitivity of optical wavelengths to various atomic and molecular species using both data-driven and theoretical means via a custom grid of MARCS synthetic spectra, and make recommendations for where MARCS struggles to reproduce cool dwarf fluxes. Under leave-one-out cross-validation, our Cannon model is capable of recovering Teff, log g, [Fe/H], and [Ti/Fe] with precisions of 1.4 per cent, $\pm 0.04\,$ dex, $\pm 0.10\,$ dex, and $\pm 0.06\,$ dex respectively, with the recovery of [Ti/Fe] pointing to the as-yet mostly untapped potential of exploiting the abundant – but complex – chemical information within optical spectra of cool stars.

     
    more » « less