skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Zapping Zika with a Mosquito-Managing Drone: Computing Optimal Flight Patterns with Minimum Turn Cost (Multimedia Contribution)
We present results arising from the problem of sweeping a mosquito-infested area with an Un-manned Aerial Vehicle (UAV) equipped with an electrified metal grid. This is related to the Traveling Salesman Problem, the Lawn Mower Problem and, most closely, Milling with TurnCost. Planning a good trajectory can be reduced to considering penalty and budget variants of covering a grid graph with minimum turn cost. On the theoretical side, we show the solution of a problem from The Open Problems Project that had been open for more than 15 years, and hint at approximation algorithms. On the practical side, we describe an exact method based on Integer Programming that is able to compute provably optimal instances with over 500 pixels. These solutions are actually used for practical trajectories, as demonstrated in the video.  more » « less
Award ID(s):
1646607
PAR ID:
10082541
Author(s) / Creator(s):
; ;  ; ;
Date Published:
Journal Name:
33rd International Symposium on Computational Geometry (SoCG 2017)
Volume:
77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information access systems, such as search engines and recommender systems, order and position results based on their estimated relevance. These results are then evaluated for a range of concerns, including provider-side fairness: whether exposure to users is fairly distributed among items and the people who created them. Several fairness-aware ranking and re-ranking techniques have been proposed to ensure fair exposure for providers, but this work focuses almost exclusively on linear layouts in which items are displayed in single ranked list. Many widely-used systems use other layouts, such as the grid views common in streaming platforms, image search, and other applications. Providing fair exposure to providers in such layouts is not well-studied. We seek to fill this gap by providing a grid-aware re-ranking algorithm to optimize layouts for provider-side fairness by adapting existing re-ranking techniques to grid-aware browsing models, and an analysis of the effect of grid-specific factors such as device size on the resulting fairness optimization. Our work provides a starting point and identifies open gaps in ensuring provider-side fairness in grid-based layouts. 
    more » « less
  2. Estimating the ε-approximate quantiles or ranks of a stream is a fundamental task in data monitoring. Given a stream x_1,..., x_n from a universe \mathcalU with total order, an additive-error quantile sketch \mathcalM allows us to approximate the rank of any query y\in \mathcalU up to additive ε n error. In 2001, Greenwald and Khanna gave a deterministic algorithm (GK sketch) that solves the ε-approximate quantiles estimation problem using O(ε^-1 łog(ε n)) space \citegreenwald2001space ; recently, this algorithm was shown to be optimal by Cormode and Vesleý in 2020 \citecormode2020tight. However, due to the intricacy of the GK sketch and its analysis, over-simplified versions of the algorithm are implemented in practical applications, often without any known theoretical guarantees. In fact, it has remained an open question whether the GK sketch can be simplified while maintaining the optimal space bound. In this paper, we resolve this open question by giving a simplified deterministic algorithm that stores at most (2 + o(1))ε^-1 łog (ε n) elements and solves the additive-error quantile estimation problem; as a side benefit, our algorithm achieves a smaller constant factor than the \frac11 2 ε^-1 łog(ε n) space bound in the original GK sketch~\citegreenwald2001space. Our algorithm features an easier analysis and still achieves the same optimal asymptotic space complexity as the original GK sketch. Lastly, our simplification enables an efficient data structure implementation, with a worst-case runtime of O(łog(1/ε) + łog łog (ε n)) per-element for the ordinary ε-approximate quantile estimation problem. Also, for the related weighted'' quantile estimation problem, we give efficient data structures for our simplified algorithm which guarantee a worst-case per-element runtime of O(łog(1/ε) + łog łog (ε W_n/w_\textrmmin )), achieving an improvement over the previous upper bound of \citeassadi2023generalizing. 
    more » « less
  3. Matthieu Bloch (Ed.)
    Motivated by an open problem and a conjecture, this work studies the problem of single server private information retrieval with private coded side information (PIR-PCSI) that was recently introduced by Heidarzadeh et al. The goal of PIR-PCSI is to allow a user to efficiently retrieve a desired message Wθ, which is one of K independent messages that are stored at a server, while utilizing private side information of a linear combination of a uniformly chosen size-M subset (S ⊂ [K]) of messages. The settings PIR-PCSI-I and PIR-PCSI-II correspond to the constraints that θ is generated uniformly from [K]\S, and S, respectively. In each case, (θ, S) must be kept private from the server. The capacity is defined as the supremum over message and field sizes, of achievable rates (number of bits of desired message retrieved per bit of download) and is characterized by Heidarzadeh et al. for PIR-PCSI-I in general, and for PIR- PCSI-II for M > (K + 1)/2 as (K − M + 1)−1. For 2 ≤ M ≤ (K + 1)/2 the capacity of PIR-PCSI-II remains open, and it is conjectured that even in this case the capacity is (K − M + 1)−1. We show the capacity of PIR-PCSI-II is equal to 2/K for 2 ≤ M ≤ K+1, which is strictly larger 2 than the conjectured value, and does not depend on M within this parameter regime. Remarkably, half the side-information is found to be redundant. We also characterize the infimum capacity (infimum over fields instead of supremum), and the capacity with private coefficients. The results are generalized to PIR-PCSI-I (θ ∈ [K] \ S) and PIR-PCSI (θ ∈ [K]) settings. 
    more » « less
  4. Grid-free Monte Carlo methods based on thewalk on spheres (WoS)algorithm solve fundamental partial differential equations (PDEs) like the Poisson equation without discretizing the problem domain or approximating functions in a finite basis. Such methods hence avoid aliasing in the solution, and evade the many challenges of mesh generation. Yet for problems with complex geometry, practical grid-free methods have been largely limited to basic Dirichlet boundary conditions. We introduce thewalk on stars (WoSt)algorithm, which solves linear elliptic PDEs with arbitrary mixed Neumann and Dirichlet boundary conditions. The key insight is that one can efficiently simulate reflecting Brownian motion (which models Neumann conditions) by replacing the balls used by WoS withstar-shapeddomains. We identify such domains via the closest point on the visibility silhouette, by simply augmenting a standard bounding volume hierarchy with normal information. Overall, WoSt is an easy modification of WoS, and retains the many attractive features of grid-free Monte Carlo methods such as progressive and view-dependent evaluation, trivial parallelization, and sublinear scaling to increasing geometric detail. 
    more » « less
  5. Due to limited amplitude and controlled phase of current supplied by inverter-interfaced renewable power plants (IIRPPs), the IIRPP-side distance protection of lines connected to IIRPPs fails to detect the fault location accurately, so it may malfunction. The composite sequence network of a line connected to an IIRPP during asymmetrical faults is analyzed, and an adaptive distance protection based on the analytical model of additional impedance is proposed in this study. Based on open circuit property of negative-sequence network at the IIRPP-side, the equivalent impedance of power grid and current flowing through fault point are calculated in real-time using local measurements, which are substituted into the analytical model of additional impedance to calculate fault location. In the case of negative-sequence reactive current injection from IIRPPs during asymmetrical faults, the error of calculating fault point current from local measurements is analyzed and corrected to ensure reliability of the proposed protection. The proposed protection alleviates the effect of fault resistance in a system with weak sources. In addition, the proposed protection can adapt to different grid codes (GCs), the operation mode change of the power grid, and the capacity change of the IIRPP. PSCAD/EMTDC test results verify the effectiveness of the proposed protection. 
    more » « less