skip to main content

Title: Approximate Distributed Spatiotemporal Topic Models for Multi-Robot Terrain Characterization
Unsupervised learning techniques, such as Bayesian topic models, are capable of discovering latent structure directly from raw data. These unsupervised models can endow robots with the ability to learn from their observations without human supervision, and then use the learned models for tasks such as autonomous exploration, adaptive sampling, or surveillance. This paper extends single-robot topic models to the domain of multiple robots. The main difficulty of this extension lies in achieving and maintaining global consensus among the unsupervised models learned locally by each robot. This is especially challenging for multi-robot teams operating in communication-constrained environments, such as marine robots. We present a novel approach for multi-robot distributed learning in which each robot maintains a local topic model to categorize its observations and model parameters are shared to achieve global consensus. We apply a combinatorial optimization procedure that combines local robot topic distributions into a globally consistent model based on topic similarity, which we find mitigates topic drift when compared to a baseline approach that matches topics naively. We evaluate our methods experimentally by demonstrating multi-robot underwater terrain characterization using simulated missions on real seabed imagery. Our proposed method achieves similar model quality under bandwidth-constraints to that achieved by models more » that continuously communicate, despite requiring less than one percent of the data transmission needed for continuous communication. « less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems
Sponsoring Org:
National Science Foundation
More Like this
  1. The conventional machine learning (ML) and deep learning (DL) methods use large amount of data to construct desirable prediction models in a central fusion center for recognizing human activities. However, such model training encounters high communication costs and leads to privacy infringement. To address the issues of high communication overhead and privacy leakage, we employed a widely popular distributed ML technique called Federated Learning (FL) that generates a global model for predicting human activities by combining participated agents’ local knowledge. The state-of-the-art FL model fails to maintain acceptable accuracy when there is a large number of unreliable agents who can infuse false model, or, resource-constrained agents that fails to perform an assigned computational task within a given time window. We developed an FL model for predicting human activities by monitoring agent’s contributions towards model convergence and avoiding the unreliable and resource-constrained agents from training. We assign a score to each client when it joins in a network and the score is updated based on the agent’s activities during training. We consider three mobile robots as FL clients that are heterogeneous in terms of their resources such as processing capability, memory, bandwidth, battery-life and data volume. We consider heterogeneous mobile robotsmore »for understanding the effects of real-world FL setting in presence of resource-constrained agents. We consider an agent unreliable if it repeatedly gives slow response or infuses incorrect models during training. By disregarding the unreliable and weak agents, we carry-out the local training of the FL process on selected agents. If somehow, a weak agent is selected and started showing straggler issues, we leverage asynchronous FL mechanism that aggregate the local models whenever it receives a model update from the agents. Asynchronous FL eliminates the issue of waiting for a long time to receive model updates from the weak agents. To the end, we simulate how we can track the behavior of the agents through a reward-punishment scheme and present the influence of unreliable and resource-constrained agents in the FL process. We found that FL performs slightly worse than centralized models, if there is no unreliable and resource-constrained agent. However, as the number of malicious and straggler clients increases, our proposed model performs more effectively by identifying and avoiding those agents while recognizing human activities as compared to the stateof-the-art FL and ML approaches.« less
  2. Sensor coverage is the critical multi-robot problem of maximizing the detection of events in an environment through the deployment of multiple robots. Large multi-robot systems are often composed of simple robots that are typically not equipped with a complete set of sensors, so teams with comprehensive sensing abilities are required to properly cover an area. Robots also exhibit multiple forms of relationships (e.g., communication connections or spatial distribution) that need to be considered when assigning robot teams for sensor coverage. To address this problem, in this paper we introduce a novel formulation of sensor coverage by multi-robot systems with heterogeneous relationships as a graph representation learning problem. We propose a principled approach based on the mathematical framework of regularized optimization to learn a unified representation of the multi-robot system from the graphs describing the heterogeneous relationships and to identify the learned representation’s underlying structure in order to assign the robots to teams. To evaluate the proposed approach, we conduct extensive experiments on simulated multi-robot systems and a physical multi-robot system as a case study, demonstrating that our approach is able to effectively assign teams for heterogeneous multi-robot sensor coverage.
  3. Integrating regularization methods with standard loss functions such as the least squares, hinge loss, etc., within a regression framework has become a popular choice for researchers to learn predictive models with lower variance and better generalization ability. Regularizers also aid in building interpretable models with high-dimensional data which makes them very appealing. It is observed that each regularizer is uniquely formulated in order to capture data-specific properties such as correlation, structured sparsity and temporal smoothness. The problem of obtaining a consensus among such diverse regularizers while learning a predictive model is extremely important in order to determine the optimal regularizer for the problem. The advantage of such an approach is that it preserves the simplicity of the final model learned by selecting a single candidate model which is not the case with ensemble methods as they use multiple candidate models for prediction. This is called the consensus regularization problem which has not received much attention in the literature due to the inherent difficulty associated with learning and selecting a model from an integrated regularization framework. To solve this problem, in this paper, we propose a method to generate a committee of non-convex regularized linear regression models, and use a consensusmore »criterion to determine the optimal model for prediction. Each corresponding non-convex optimization problem in the committee is solved efficiently using the cyclic-coordinate descent algorithm with the generalized thresholding operator. Our Consensus RegularIzation Selection based Prediction (CRISP) model is evaluated on electronic health records (EHRs) obtained from a large hospital for the congestive heart failure readmission prediction problem. We also evaluate our model on high-dimensional synthetic datasets to assess its performance. The results indicate that CRISP outperforms several state-of-the-art methods such as additive, interactions-based and other competing non-convex regularized linear regression methods.« less
  4. Model-based optimal control of soft robots may enable compliant, underdamped platforms to operate in a repeatable fashion and effectively accomplish tasks that are otherwise impossible for soft robots. Unfortunately, developing accurate analytical dynamic models for soft robots is time-consuming, difficult, and error-prone. Deep learning presents an alternative modeling approach that only requires a time history of system inputs and system states, which can be easily measured or estimated. However, fully relying on empirical or learned models involves collecting large amounts of representative data from a soft robot in order to model the complex state space–a task which may not be feasible in many situations. Furthermore, the exclusive use of empirical models for model-based control can be dangerous if the model does not generalize well. To address these challenges, we propose a hybrid modeling approach that combines machine learning methods with an existing first-principles model in order to improve overall performance for a sampling-based non-linear model predictive controller. We validate this approach on a soft robot platform and demonstrate that performance improves by 52% on average when employing the combined model.
  5. We study the problem of information sampling with a group of mobile robots from an unknown environment. Each robot is given a unique region in the environment for the sampling task. The objective of the robots is to visit a subset of locations in the environment such that the collected information is maximized, and consequently, the underlying information model matches as close to reality as possible. The robots have limited communication ranges, and therefore can only communicate when nearby one another. The robots operate in a stochastic environment and their control uncertainty is handled using factored Decentralized Markov Decision Processes (Dec-MDP). When two or more robots communicate, they share their past noisy observations and use a Gaussian mixture model to update their local information models. This in turn helps them to obtain a better Dec-MDP policy. Simulation results show that our proposed strategy is able to predict the information model closer to the ground truth version than compared to other algorithms. Furthermore, the reduction in the overall uncertainty is more than comparable algorithms.