skip to main content

Title: Comparison of two alternative approaches to quality STEM teacher preparation: Fast‐track licensure and embedded residency programs

Alternative pathways to teaching licensure were developed to address teacher shortages. These programs differ widely, making it difficult to generalize the effects. This study compares the impact of two alternative licensure programs on the development of fundamental elements of science teacher preparation and persistence. The fast‐track programs include a 6‐month teacher preparation program and a one‐year residency teacher preparation program. The study concluded that licensure type was unassociated with the impact on teaching self‐efficacy, beliefs about teacher‐focused/student‐focused teaching, preferences for inquiry instructional practices, and experiences with student misbehavior. However, the study revealed that licensure type was associated with a number of other variables: residency students had more confidence in their ability to provide quality instruction; preferred inquiry‐based instruction more often; and may be better prepared for the high‐needs classroom. Those in the 6‐month program were more likely to score higher on practical versus theoretical approaches to teaching, and while they had a more realistic idea of how to measure success in the high‐needs classroom, the residency students had more knowledge of educational theory and how to apply it. Findings suggest that more traditionally licensed teachers may be more inclined to use inquiry‐based methods suggested in current reforms.

more » « less
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
School Science and Mathematics
Page Range / eLocation ID:
p. 35-48
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Bureau of Statistics identified an urgent demand for science, technology, engineering, and mathematics (STEM) professionals in the coming years. In order to meet this demand, the number of students graduating with STEM degrees in the United States needs to increase by 34% annually [1]. Engineering for US All (E4USA): A National Pilot Program for High School Engineering Course and Database is a NSF-funded first-of-its-kind initiative designed to address this national need. The E4USA project aims to make engineering more inclusive and accessible to underrepresented minorities, while increasing racial, ethnic, and gender representation in higher education and the workforce. The “for us all” mission of E4USA encompasses both students and educators. The demand for engineering educators has increased, but relying on practicing engineers to switch careers and enter teacher preparation programs has been insufficient [2, 3, 4]. This has led schools to turn to educators with limited training in engineering, which could potentially have a significant national impact on student engineering education [5, 6, 7]. Part of the E4USA pilot year mission has been to welcome educators with varying degrees of experience in industry and teaching. Paramount to E4USA was the construction of professional development (PD) experiences and a community of practice that would prepare and support teachers with varying degrees of engineering training instruction as they implemented the yearlong course. The perspectives of four out of nine educators were examined during a weeklong, intensive E4USA PD. Two of four educators were considered ‘novices’; one with a background in music and the other in history. The remaining two educators were deemed ‘veterans’ with a total of 15 years of experience as engineers and more than 20 years as engineering educators. Data sources consist of focus groups, surveys, and artifacts created during the PD (e.g., educators’ responses to reflection prompts and letters written to welcome the next cohort). Focus group data is currently being analyzed using inductive coding and the constant comparative method in order to identify emergent themes that speak to the past experience or inexperience of educators with engineering. Artifacts were used to: 1) Triangulate the findings generated from the analysis of focus group, and 2) Further understand how the veteran educators supported the novice educators. We will also use quantitative survey data to examine descriptive statistics, observed score bivariate correlations, and differences in mean scores across novices and veterans to further examine potential common and unique experiences for these educators. The results aim to highlight how the inclusion of educators with a broad spectrum of past experiences with engineering and engineering education can increase educators’ empathy towards students who may be equally hesitant about engineering. The findings from this study are expected to result in implications for how PD and a community of practice may be developed to allow for reciprocal support and mentoring. Results will inform future efforts of E4USA and aim to change the structure of high school engineering education nationwide. 
    more » « less
  2. The University of Indianapolis Teach (STEM)3 (UIndy TS3) program is a clinical residency teacher preparation program in which candidates earn a Master of Arts in Teaching degree with licensure in Chemistry, Biology, or Math. UIndy TS3 consists of multiple layers of support, including a clinical residency with clinical mentor teachers and clinical faculty who also serve as university supervisors, integrated and scaffolded university coursework, which includes clinical seminars and classroom observations, and two years of in-service mentoring. Evaluation and retention results indicate that candidates are well-supported in their high-need classrooms by these program components, and our 3-year retention rate of 93% over eight cohorts is higher than the national average. Moreover, the clinical mentor teacher (CMT) is enriched by the candidate’s presence in the classroom, as the candidate imports new teaching methodologies (such as project-based learning) and technologies to the classroom that in turn inform the practice of the CMT. School administrators are also positively impacted by interacting with the candidates, both by keeping apprised of the challenges that new teachers face and by learning new ways to engage students. The efficacy of UIndy TS3 is proven by our 100% placement rate, long-term retention of program graduates, and their recognition as teacher leaders. 
    more » « less
  3. Langran, E. ; Christensen, P. ; Sanson, J. (Ed.)
    Prior to COVID-19 and the shift to fully online instruction, teacher preparation programs were teaching candidates to use technology in the classroom, but they were not focusing on how to teach in exclusively online or hybrid models. In the future, all preservice teachers will need to know how to teach online, whether due to necessity or by choice. Therefore, the purpose of our research is to first identify essential elements of critical digital pedagogy for facilitating online inquiry, and then to integrate these methods into our teacher preparation program to prepare preservice teachers to facilitate inquiry-based science, technology, and mathematics (STEM) effectively in online learning environments that are equitable and inclusive of all learners. We utilize a mixed-methods approach with quantitative and qualitative measures including literature reviews, individual interviews, focus groups, program documents, and efficacy surveys. Drawing on this data, this presentation shares the findings from the first part of this three-year research project by discussing essential elements of critical digital pedagogy for facilitating online STEM inquiry. We identify what tools and instructional approaches can be used to support STEM learning in online environments in ways that will support all students, including those who are traditionally marginalized in U.S. schools. 
    more » « less
  4. Karunakaran, S. S. ; Higgins, A. (Ed.)
    The critical role of teachers in supporting student engagement with reasoning and proving has long been recognized (Nardi & Knuth, 2017; NCTM, 2014). While some studies examined how prospective secondary teachers (PSTs) develop dispositions and teaching practices that promote student engagement with reasoning and proving (e.g., Buchbinder & McCrone, 2020; Conner, 2007), very little is known about long-term development of proof-related practices of beginning teachers and what factors affect this development (Stylianides et al., 2017). During the supervised teaching experiences, interns often encounter tensions between balancing their commitments to the university and cooperating teacher, while also developing their own teaching styles (Bieda et al., 2015; Smagorinsky et al., 2004; Wang et al., 2008). Our study examines how sociocultural contexts of the teacher preparation program and of the internship school, supported or inhibited proof-related teaching practices of beginning secondary mathematics teachers. In particular, this study aims to understand the observed gap between proof-related teaching practices of one such teacher, Olive, in two settings: as a PST in a capstone course Mathematical Reasoning and Proving for Secondary Teachers (Buchbinder & McCrone, 2020) and as an intern in a high-school classroom. We utilize activity theory (Leont’ev, 1979) and Engeström’s (1987) model of an activity system to examine how the various components of the system: teacher (subject), teaching (object), the tasks (tools), the curriculum and the expected teaching style (rules), the cooperating teacher (community) and their involvement during the teaching (division of labor) interact with each other and affect the opportunities provided to students to engage with reasoning and proving (outcome). The analysis of four lessons from each setting, lesson plans, reflections and interviews, showed that as a PST, Olive engaged students with reasoning and proving through productive proof-related teaching practices and rich tasks that involved conjecturing, justifying, proving and evaluating arguments. In a sharp contrast, as an intern, Olive had to follow her school’s rigid curriculum and expectations, and to adhere to her cooperating teacher’s teaching style. As a result, in her lessons as an intern students received limited opportunities for reasoning and proving. Olive expressed dissatisfaction with this type of teaching and her desire to enact more proof-oriented practices. Our results show that the sociocultural components of the activity system (rules, community and division of labor), which were backgrounded in Olive’s teaching experience as a PST but prominent in her internship experience, influenced the outcome of engaging students with reasoning and proving. We discuss the importance of these sociocultural aspects as we examine how Olive navigated the tensions between the proof-related teaching practices she adopted in the capstone course and her teaching style during the internship. We highlight the importance of teacher educators considering the sociocultural aspects of teaching in supporting beginning teachers developing proof-related teaching practices. 
    more » « less
  5. Although engineering is becoming increasingly important in K-12 education, previous research has demonstrated that, similar to the general population, K-12 teachers typically hold inaccurate perceptions of engineering, which affects their ability to provide students with relevant engineering experiences. Studies have shown that K-12 teachers often confuse the work of engineers with that of automotive mechanics or construction workers or assume that engineering is only for “super smart” students who are naturally gifted or who come from higher socioeconomic backgrounds. This indicates that many teachers do not understand the nature of engineering work and have stereotypical attitudes about who is qualified to be an engineer. These inaccurate perceptions of engineering among K-12 teachers may influence the way that teachers introduce engineering practices to their students and make connections between engineering and the other STEM disciplines. In addition, teacher self-efficacy has been shown to not only influence teachers’ willingness to engage with a particular topic, but also to have a significant influence on the motivation and achievement of their students. Research also indicates that high-efficacy teachers typically exert more effort and utilize more effective instructional strategies than low-efficacy teachers. The goal of this study was to examine the perceptions that pre-service K-12 teachers hold about engineers and engineering, and to further explore how those perceptions influence their self-efficacy with teaching engineering and beliefs about what skills and resources are necessary to teach engineering in a K-12 classroom. We first developed a survey instrument that included questions taken from two previously published instruments: the Design, Engineering, and Technology survey and the Teaching Engineering Self-Efficacy Scale for K-12 Teachers. Forty-two students enrolled in an undergraduate program at {Name Redacted} in which students simultaneously pursue a bachelor’s degree in a STEM field and K-12 teacher licensure completed the survey. Based on survey responses, six participants, representing a range of self-efficacy scores and majors, were selected to participate in interviews. In these interviews, participants were asked questions about their perceptions of engineers and were also asked to sort a list of characteristics based on whether they applied to engineers or not. Finally, interview participants were asked questions about their confidence in their ability to teach engineering and about what skills and/or resources they would require to be able to teach engineering in their future classrooms. The results of this study indicated that the participants’ perceptions of engineering and engineers did impact their self-efficacy with teaching engineering and their beliefs about how well engineering could be incorporated into other STEM subjects. A recurring theme among participants with low self-efficacy was a lack of exposure to engineering and inaccurate perceptions of the nature of engineering work. These pre-service teachers felt that they would not be able to teach engineering to K-12 students because they did not personally have much exposure to engineering or knowledge about engineering work. In future work, we will investigate how providing pre-service teachers with training in engineering education and exposure to engineers and engineering students impacts both their perceptions of engineering and self-efficacy with teaching engineering. 
    more » « less