skip to main content


Title: Poly(Alkyl Glycidate Carbonate)s as Degradable Pressure‐Sensitive Adhesives
Abstract

Insertion of CO2into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2and a derivatized oxirane. All the carbonate analogues possess higher glass‐transition temperatures (Tg=32 to −5 °C) than alkyl acrylates (Tg=10 to −50 °C), however, the carbonate analogues (Td≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td≈380 °C). The poly(alkyl carbonates) exhibit compositional‐dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2in a time‐ and pH‐dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.

 
more » « less
NSF-PAR ID:
10083047
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
58
Issue:
5
ISSN:
1433-7851
Page Range / eLocation ID:
p. 1407-1411
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Internal plasticization of poly(vinyl chloride) (PVC) was achieved in one‐step using copper‐mediated atom transfer radical polymerization to graft different ratios of randomn‐butyl acrylate and 2–2‐(2‐ethoxyethoxy)ethyl acrylate copolymers from defect sites on the PVC chain. Five graft polymers were made with different ratios of poly(butyl acrylate) (PBA) and poly(2–2‐(2‐ethoxyethoxy)ethyl acrylate) (P2EEA); the glass transition temperatures (Tg) of functionalized PVC polymers range from − 25 to − 50°C. SingleTgvalues were observed for all polymers, indicating good compatibility between PVC and grafted chains, with no evidence of microphase separation. Plasticization efficiency is higher for polyether P2EEA moieties compared with PBA components. The resultant PVC graft copolymers are thermally more stable compared to unmodified PVC. Increasing the reaction scale from 2 to 14 g produces consistent and reproducible results, suggesting this method could be applicable on an industrial scale.

     
    more » « less
  2. ABSTRACT

    Advanced film capacitors require polymers with high thermal stability, high breakdown strength, and low loss for high temperature dielectric applications. To fulfill such requirements, two polymer multilayer film systems were coextruded via the forced assembly technique. High glass transition temperature (Tg) polycarbonate (HTPC,Tg = 165 °C) and polysulfone (PSF,Tg = 185 °C) were multilayered with a high dielectric constant polymer, poly(vinylidene fluoride) (PVDF), respectively. The PSF/PVDF system was more thermally stable than the HTPC/PVDF system because of the higherTgfor PSF. At temperatures lower than 170 °C, the HTPC/PVDF system exhibited comparable breakdown strength and hysteresis loss as the PSF/PVDF system. While at temperatures above 170 °C, the PSF/PVDF system exhibited a higher breakdown strength because of the higherTgof PSF. The electric displacement‐electric field (D‐E) loop behavior of the PSF/PVDF system was studied as a function of temperature. Moreover, a melt‐recrystallization process could further decrease the hysteresis loss for the PSF/PVDF system due to better edge‐on crystal orientation. These results demonstrate that PSF/PVDF and HTPC/PVDF systems are applicable for high temperature film capacitors. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2019,136, 47535.

     
    more » « less
  3. ABSTRACT

    The polymerization of biorenewable molecules to polymers with hydrolyzable main‐chain functionality is one approach to identifying sustainable replacements for common, environmentally unsound packaging plastics. Bioaromatic polyacetals were synthesized via acid‐catalyzed acetal formation from dialdehydes and tetraols. Ethylene linked dialdehyde monomersVVandSSwere constructed from bioaromatics vanillin and syringaldehyde, respectively. Tetraol monomers included biogenic erythritol (E), along with pentaerythritol (P), and ditrimethylolpropane (D). Four copolymer series were prepared with varying tetraol content:E/PVV;E/DVV;E/PSS; andE/DSS. Number average molecular weights (Mn) ranged from 1,400 to 27,100 Da. Generally, the copolymerization yields were inversely proportional to the feed fraction of erythritol (E), implying that tetraolsPandDreact more readily. The materials were typically amorphous and exhibited glass transition temperatures (Tg) ranging from 57 to 159 °C, suitably mimicking theTgvalues of several commodity plastics. The syringaldehyde‐based copolymers exhibited a higherTgrange (71–159 °C) than the vanillin‐based copolymers (57–110 °C). Accelerated degradation studies in aqueous HCl (3M, 6M, concentrated) over 24 h showed that degradation (Mndecrease) was proportional to the acid concentration. A one‐year degradation study ofE50/D50‐SS(from 50% feed of erythritol) in seawater, deionized water, tap water, or pH 5 buffer showed noMndecrease; but in pH 1 buffer, the decrease was 40% (18,800 to 11,200). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci.2016,133, 44089.

     
    more » « less
  4. Herein, we present the direct modification of glucose, an abundant and inexpensive sugar molecule, to produce new sustainable and functional polymers. Glucose-6-acrylate-1,2,3,4-tetraacetate (GATA) has been synthesized and shown to provide a useful glassy component for developing an innovative family of elastomeric and adhesive materials. A series of diblock and triblock copolymers of GATA and n -butyl acrylate (n-BA) were created via Reversible Addition–Fragmentation Chain Transfer (RAFT) polymerization. Initially, poly(GATA)- b -poly(n-BA) copolymers were prepared using 4-cyano-4-[(ethylsulfanylthiocarbonyl)sulfanyl] pentanoic acid (CEP) as a chain transfer agent (CTA). These diblock copolymers demonstrated decomposition temperatures of 275 °C or greater and two glass transition temperatures ( T g ) around −45 °C and 100 °C corresponding to the PnBA and PGATA domains, respectively, as measured by differential scanning calorimetry (DSC). Triblock copolymers of GATA and n-BA, with moderate dispersities ( Đ = 1.15–1.29), were successfully synthesized when S , S -dibenzyl trithiocarbonate (DTC) was employed as the CTA. Poly(GATA)- b -poly(nBA)- b -poly(GATA) copolymers with 14–58 wt% GATA were prepared and demonstrated excellent thermomechanical properties ( T d ≥ 279 °C). Two well-separated glass transitions near the values for homopolymers of n-BA and GATA (∼−45 °C and ∼100 °C, respectively) were measured by DSC. The triblock with 14% GATA exhibited peel adhesion of 2.31 N cm −1 (when mixed with 30 wt% tackifier) that is superior to many commercial pressure sensitive adhesives (PSAs). Use of 3,5-bis(2-dodecylthiocarbonothioylthio-1oxopropoxy)benzoic acid (BTCBA) as the CTA provided a more efficient route to copolymerize GATA and n-BA. Using BTCBA, poly(GATA)- b -poly(nBA)- b -poly(GATA) triblock copolymers containing 12–25 wt% GATA, with very narrow molar mass distributions ( Đ ≤ 1.08), were prepared. The latter series of triblock copolymers showed excellent thermal stability with T d ≥ 275 °C. Only the T g for the PnBA block was observed by DSC (∼−45 °C), however, phase-separation was confirmed by small-angle X-ray scattering (SAXS) for all of these triblock copolymers. The mechanical behavior of the polymers was investigated by tensile experiments and the triblock with 25% GATA content demonstrated moderate elastomeric properties, 573 kPa stress at break and 171% elongation. This study introduces a new family of glucose-based ABA-type copolymers and demonstrates functionality of a glucose-based feedstock for developing green polymeric materials. 
    more » « less
  5. Abstract

    Large anisotropic deformation affects the physical state of a polymer glass, where the changes in the state of material are revealed by performing a differential scanning calorimetry (DSC) experiment. Previously, the deformation was applied to polymers well below their glass transition temperatures, and it was found that uniaxial compressive loading–unloading resulted in a broad exothermic peak on the DSC trace. Here we report on the effect on the subsequent DSC response of a deformation experiment performed in uniaxial extension on a ductile 50:50 co‐polymer poly(BMA‐co‐MMA) (PBMA/MMA). The deformation of up to 80% strain was applied atTg − 30°C andTg − 40°C, that is, closer toTgthan in the previous work. Unlike in the well belowTgdeformation case, the DSC trace contains an endothermic peak followed by an exothermic peak. The magnitude of the endothermic peak as well as the asymptotic glassy heat capacity increase with the amount of mechanical work performed during the deformation cycle.

     
    more » « less