skip to main content


Title: Large birds travel farther in homogeneous environments
Abstract Aim

Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos).

Location

Global.

Time period

2003–2015.

Major taxa studied

Birds.

Methods

We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation.

Results

We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds.

Main conclusions

We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.

 
more » « less
NSF-PAR ID:
10083185
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ; « less
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
28
Issue:
5
ISSN:
1466-822X
Page Range / eLocation ID:
p. 576-587
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We tested the effects of season and migratory status (residents‐versus‐seasonal migrants) on island biogeography of bird assemblages through partitioning beta diversity into richness and turnover components and community nestedness metrics. We predicted that total beta diversity, the richness component of beta diversity and community nestedness will be lower for bird assemblages in winter than in summer, and lowest of all for winter visitors. These predictions were derived from published ideas about resource availability, movement and habitat choice in birds in different seasons.

    Location

    Thousand Island Lake, China.

    Methods

    Bird species were sampled using line transects on 36 islands during five breeding and winter seasons (2009−2014). Birds were grouped into assemblages of winter residents, winter visitors and summer residents. Associations between beta diversity partitioning, island area, isolation and habitat richness were tested using partial Mantel correlations. We complemented these tests with measures of nestedness and null model approaches.

    Results

    Contrary to expectation, beta diversity, nestedness and difference of beta diversity or its components from null models were higher for winter residents than either summer resident or winter visitor assemblages. As predicted, winter visitors showed little association with habitat richness, and beta diversity was rarely different from null communities. Summer residents had the highest correlations of beta diversity components with habitat richness, but showed the lowest level of total beta diversity, a low richness component and were anti‐nested (less nested than random).

    Main conclusions

    Substantial differences were found in the biogeography of winter‐versus‐summer residents, and seasonal visitor (migratory)‐versus‐resident bird assemblages, which match expectations derived from bird biology and population ecology. Summer residents highlighted the role of habitat‐related niche differences, whereas winter residents showed area‐related selective extinction. By contrast, winter visitors appeared to be more randomly distributed.

     
    more » « less
  2. Abstract

    Seasonal migrations are fascinating and ecologically important, but many migratory species are declining as climate change and land‐use change alter the habitats used by migrants across the annual cycle. While some migratory birds use a single wintering site, others undertake large‐scale post‐migratory movements during the nonbreeding season. Technological advances that enable tracking individual birds are uncovering more examples of post‐migratory nonbreeding movements. Documenting these movements is important for conservation, which requires understanding when and where migrants use habitats throughout their range. Here, we reviewed existing literature and collected information on the post‐migratory nonbreeding movements of 92 migratory bird species from 18 orders across six continents. Among these records, the most commonly reported drivers of movements were resource availability and climate. This strong dependence of post‐migratory nonbreeding movements on birds' abiotic and biotic environments suggests that environmental change will impact the patterns of these movements and potentially the fitness of species that undertake them. We also reviewed post‐migratory nonbreeding movements in North American‐breeding thrushes from the genusCatharusto examine the drivers of these movements in five closely related migratory species. We find that species that are less territorial are more likely to use multiple sites during the nonbreeding season; however, there is little evidence for dietary, evolutionary, or environmental differences between thrush species that move during winter and those that are stationary. While we believe our study represents the most comprehensive list of species exhibiting post‐migratory nonbreeding movements to date, biases in sampling, a lack of common terminology for these movements, and the still‐nascent availability of inexpensive, lightweight tracking devices mean that there are probably more populations that undertake such movements. Future research into the consequences of post‐migratory nonbreeding movements for individual fitness and ecosystem services would advance our understanding of their conservation importance and their evolution.

     
    more » « less
  3. Abstract Aim

    Animal migration is often explained as the result of resource tracking in seasonally dynamic environments. Therefore, resource availability should influence both the distributions of migratory animals and their seasonal abundance. We examined the relationship between primary productivity and the spatio‐temporal distributions of migratory birds to assess the role of energy availability in avian migration.

    Location

    North America.

    Time period

    Full annual cycle, 2011–2016.

    Major taxa studied

    Nocturnally migrating landbirds.

    Methods

    We used observations of nocturnally migrating landbirds from the eBird community‐science programme to estimate weekly spatial distributions of total biomass, abundance and species richness. We related these patterns to primary productivity and seasonal productivity surplus estimated using a remotely sensed measure of vegetation greenness.

    Results

    All three avian metrics showed positive spatial associations with primary productivity, and this was more pronounced with seasonal productivity surplus. Surprisingly, biomass showed a weaker association than did abundance and richness, despite being a better indicator of energetic requirements. The strength of associations varied across seasons, being the weakest during migration. During spring migration, avian biomass increased ahead of vegetation green‐up in temperate regions, a pattern also previously described for herbivorous waterfowl. In the south‐eastern USA, spring green‐up was instead associated with a net decrease in biomass, and winter biomass greatly exceeded that of summer, highlighting the region as a winter refuge for short‐distance migrants.

    Main conclusions

    Although instantaneous energy availability is important in shaping the distribution of migratory birds, the stronger association of productivity with abundance and richness than with biomass suggests the role of additional drivers unrelated to energetic requirements that are nonetheless correlated with productivity. Given recent reports of widespread North American avifaunal declines, including many common species that winter in the south‐eastern USA, understanding how anthropogenic activities are impacting winter bird populations in the region should be a research priority.

     
    more » « less
  4. Abstract Aim

    Biogeographical regions (realms) reflect patterns of co‐distributed species (biotas) across space. Their boundaries are set by dispersal barriers and difficulties of establishment in new locations. We extend new methods to assess these two contributions by quantifying the degree to which realms intergrade across geographical space and the contributions of individual species to the delineation of those realms. As our example, we focus on Wallace’s Line, the most enigmatic partitioning of the world’s faunas, where climate is thought to have little effect and the majority of dispersal barriers are short water gaps.

    Location

    Indo‐Pacific.

    Time period

    Present day.

    Major taxa studied

    Birds and mammals.

    Methods

    Terrestrial bird and mammal assemblages were established in 1‐degree map cells using range maps. Assemblage structure was modelled using latent Dirichlet allocation, a continuous clustering method that simultaneously establishes the likely partitioning of species into biotas and the contribution of biotas to each map cell. Phylogenetic trees were used to assess the contribution of deep historical processes. Spatial segregation between biotas was evaluated across time and space in comparison with numerous hard realm boundaries drawn by various workers.

    Results

    We demonstrate that the strong turnover between biotas coincides with the north‐western extent of the region not connected to the mainland during the Pleistocene, although the Philippines contains mixed contributions. At deeper taxonomic levels, Sulawesi and the Philippines shift to primarily Asian affinities, resulting from transgressions of a few Asian‐derived lineages across the line. The partitioning of biotas sometimes produces fragmented regions that reflect habitat. Differences in partitions between birds and mammals reflect differences in dispersal ability.

    Main conclusions

    Permanent water barriers have selected for a dispersive archipelago fauna, excluded by an incumbent continental fauna on the Sunda shelf. Deep history, such as plate movements, is relatively unimportant in setting boundaries. The analysis implies a temporally dynamic interaction between a species’ intrinsic dispersal ability, physiographic barriers, and recent climate change in the genesis of Earth’s biotas.

     
    more » « less
  5. Abstract

    The spatial habitat heterogeneity hypothesis posits that habitat complexity increases the abundance and diversity of species. In tropical forests, lianas add substantial habitat heterogeneity and complexity throughout the vertical forest profile, which may maintain animal abundance and diversity. The effects of lianas on tropical animal communities, however, remain poorly understood. We propose that lianas have a positive effect on animals by enhancing habitat complexity. Lianas may have a particularly strong influence on the forest bird community, providing nesting substrate, protection from predators, and nutrition (food). Understory insectivorous birds, which forage for insects that specialize on lianas, may particularly benefit. Alternatively, it is possible that lianas have a negative effect on forest birds by increasing predator abundances and providing arboreal predators with travel routes with easy access to bird nests. We tested the spatial habitat heterogeneity hypothesis on bird abundance and diversity by removing lianas, thus reducing forest complexity, using a large‐scale experimental approach in a lowland tropical forest in the Republic of Panama. We found that removing lianas decreased total bird abundance by 78.4% and diversity by 77.4% after 8 months, and by 40.0% and 51.7%, respectively, after 20 months. Insectivorous bird abundance and diversity 8 months after liana removal were 91.8% and 89.5% lower, respectively, indicating that lianas positively influence insectivorous birds. The effects of liana removal persisted longer for insectivorous birds than other birds, with 77.3% lower abundance and 76.2% lower diversity after 20 months. Liana removal also altered bird community composition, creating two distinct communities in the control and removal plots, with disproportionate effects on insectivores. Our findings demonstrate that lianas have a strong positive influence on the bird community, particularly for insectivorous birds in the forest understory. Lianas may maintain bird abundance and diversity by increasing habitat complexity, habitat heterogeneity, and resource availability.

     
    more » « less