skip to main content

Title: Microbial mechanisms and ecosystem flux estimation for aerobic NO y emissions from deciduous forest soils

Reactive nitrogen oxides (NOy; NOy= NO + NO2+ HONO) decrease air quality and impact radiative forcing, yet the factors responsible for their emission from nonpoint sources (i.e., soils) remain poorly understood. We investigated the factors that control the production of aerobic NOyin forest soils using molecular techniques, process-based assays, and inhibitor experiments. We subsequently used these data to identify hotspots for gas emissions across forests of the eastern United States. Here, we show that nitrogen oxide soil emissions are mediated by microbial community structure (e.g., ammonium oxidizer abundances), soil chemical characteristics (pH and C:N), and nitrogen (N) transformation rates (net nitrification). We find that, while nitrification rates are controlled primarily by chemoautotrophic ammonia-oxidizing archaea (AOA), the production of NOyis mediated in large part by chemoautotrophic ammonia-oxidizing bacteria (AOB). Variation in nitrification rates and nitrogen oxide emissions tracked variation in forest communities, as stands dominated by arbuscular mycorrhizal (AM) trees had greater N transformation rates and NOyfluxes than stands dominated by ectomycorrhizal (ECM) trees. Given mapped distributions of AM and ECM trees from 78,000 forest inventory plots, we estimate that broadleaf forests of the Midwest and the eastern United States as well as the Mississippi River corridor may be considered hotspots more » of biogenic NOyemissions. Together, our results greatly improve our understanding of NOyfluxes from forests, which should lead to improved predictions about the atmospheric consequences of tree species shifts owing to land management and climate change.

« less
; ; ; ; ; ; ; ; ;
Publication Date:
Journal Name:
Proceedings of the National Academy of Sciences
Page Range or eLocation-ID:
p. 2138-2145
Proceedings of the National Academy of Sciences
Sponsoring Org:
National Science Foundation
More Like this
  1. Druzhinina, Irina S. (Ed.)
    ABSTRACT Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soilmore »depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.« less
  2. Abstract Nitrification is a central process in the global nitrogen cycle, carried out by a complex network of ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), complete ammonia-oxidizing (comammox) bacteria, and nitrite-oxidizing bacteria (NOB). Nitrification is responsible for significant nitrogen leaching and N 2 O emissions and thought to impede plant nitrogen use efficiency in agricultural systems. However, the actual contribution of each nitrifier group to net rates and N 2 O emissions remain poorly understood. We hypothesized that highly fertile agricultural soils with high organic matter mineralization rates could allow a detailed characterization of N cycling in these soils. Using a combination of molecular and activity measurements, we show that in a mixed AOA, AOB, and comammox community, AOA outnumbered low diversity assemblages of AOB and comammox 50- to 430-fold, and strongly dominated net nitrification activities with low N 2 O yields between 0.18 and 0.41 ng N 2 O–N per µg NO x –N in cropped, fallow, as well as native soil. Nitrification rates were not significantly different in plant-covered and fallow plots. Mass balance calculations indicated that plants relied heavily on nitrate, and not ammonium as primary nitrogen source in these soils. Together, these results imply AOA as integral partmore »of the nitrogen cycle in a highly fertile agricultural soil.« less
  3. Plant-fungal symbioses play critical roles in vegetation dynamics and nutrient cycling, modulating the impacts of global changes on ecosystem functioning. Here, we used forest inventory data consisting of more than 3 million trees to develop a spatially resolved “mycorrhizal tree map” of the contiguous United States. We show that abundances of the two dominant mycorrhizal tree groups—arbuscular mycorrhizal (AM) and ectomycorrhizal trees—are associated primarily with climate. Further, we show that anthropogenic influences, primarily nitrogen (N) deposition and fire suppression, in concert with climate change, have increased AM tree dominance during the past three decades in the eastern United States. Given that most AM-dominated forests in this region are underlain by soils with high N availability, our results suggest that the increasing abundance of AM trees has the potential to induce nutrient acceleration, with critical consequences for forest productivity, ecosystem carbon and nutrient retention, and feedbacks to climate change.
  4. Abstract
    Recent work suggests mycorrhizal fungi are important drivers of soil organic matter dynamics; however, whether this is a result of the fungi themselves or related traits of their host trees remains unclear. We evaluated how tree mycorrhizal associations and foliar chemistry influence mineral-associated organic matter (MAOM) and particulate organic matter (POM) in temperate forests of northern New England, USA. We measured carbon (C) and nitrogen (N) concentrations and C:N of three soil density fractions beneath six tree species that vary in both mycorrhizal association and foliar chemistry. We found a significant decline in the concentration of MAOM C and N with increasing foliar C:N in soil beneath tree species with arbuscular mycorrhizal (AM), but not ectomycorrhizal (ECM) fungi. The C:N of POM and MAOM was positively associated with the foliar C:N of the dominant tree species in a forest, and MAOM C:N was also higher beneath ECM- rather than AM-associated tree species. These results add to the growing body of support for mycorrhizal fungi as predictors of soil C and N dynamics, and suggest that C concentration in the MAOM fraction is more sensitive to organic matter chemistry beneath AM-associated tree species. Because MAOM decomposition is thought to beMore>>
  5. Soil respiration is the dominant pathway by which terrestrial carbon enters the atmosphere. Many abiotic and biotic processes can influence soil respiration, including soil microbial community composition. Mycorrhizal fungi are a particularly important microbial group because they are known to influence soil chemistry and nutrient cycling, and, because the type of mycorrhizal fungi in an ecosystem can be assessed based on the plant species present, they may be easier than other soil microbes to incorporate into ecosystem models. We tested how the type of mycorrhizal fungi—arbuscular (AM) or ectomycorrhizal (ECM) fungi—associated with the dominant tree species in a mixed hardwood forest was related to soil respiration rate. We measured soil respiration, root biomass, and surface area, and soil chemical and physical characteristics during the growing season in plots dominated by ECM-associated trees, AM-associated trees, and mixtures with both. We found rates of soil respiration that were 29% and 32% higher in AM plots than in ECM and mixed plots, respectively. These differences are likely explained by the slightly higher nitrogen concentrations and deeper organic horizons in soil within AM plots compared with soil in ECM and mixed plots. Our results highlight the importance of considering mycorrhizal associations of dominant vegetationmore »as predictors of carbon cycling processes. Key words: Soil respiration; Mycorrhizal fungi; Carbon; Microbial activity; CO2; Northern hardwood forest.« less