skip to main content


Title: Comparison of Observed and Simulated Drop Size Distributions from Large-Eddy Simulations with Bin Microphysics

Two case studies of marine stratocumulus (one nocturnal and drizzling, the other daytime and nonprecipitating) are simulated by the UCLA large-eddy simulation model with bin microphysics for comparison with aircraft in situ observations. A high-bin-resolution variant of the microphysics is implemented for closer comparison with cloud drop size distribution (DSD) observations and a turbulent collision–coalescence kernel to evaluate the role of turbulence on drizzle formation. Simulations agree well with observational constraints, reproducing observed thermodynamic profiles (i.e., liquid water potential temperature and total moisture mixing ratio) as well as liquid water path. Cloud drop number concentration and liquid water content profiles also agree well insofar as the thermodynamic profiles match observations, but there are significant differences in DSD shape among simulations that cause discrepancies in higher-order moments such as sedimentation flux, especially as a function of bin resolution. Counterintuitively, high-bin-resolution simulations produce broader DSDs than standard resolution for both cases. Examination of several metrics of DSD width and percentile drop sizes shows that various discrepancies of model output with respect to the observations can be attributed to specific microphysical processes: condensation spuriously creates DSDs that are too wide as measured by standard deviation, which leads to collisional production of too many large drops. The turbulent kernel has the greatest impact on the low-bin-resolution simulation of the drizzling case, which exhibits greater surface precipitation accumulation and broader DSDs than the control (quiescent kernel) simulations. Turbulence effects on precipitation formation cannot be definitively evaluated using bin microphysics until the artificial condensation broadening issue has been addressed.

 
more » « less
PAR ID:
10083685
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
147
Issue:
2
ISSN:
0027-0644
Page Range / eLocation ID:
p. 477-493
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this study, processes that broaden drop size distributions (DSDs) in Eulerian models with two-moment bin microphysics are analyzed. Numerous tests are performed to isolate the effects of different physical mechanisms that broaden DSDs in two- and three-dimensional Weather Research and Forecasting Model simulations of an idealized ice-free cumulus cloud. Sensitivity of these effects to modifying horizontal and vertical model grid spacings is also examined. As expected, collision–coalescence is a key process broadening the modeled DSDs. In-cloud droplet activation also contributes substantially to DSD broadening, whereas evaporation has only a minor effect and sedimentation has little effect. Cloud dilution (mixing of cloud-free and cloudy air) also broadens the DSDs considerably, whether or not it is accompanied by evaporation. This mechanism involves the reduction of droplet concentration from dilution along the cloud’s lateral edges, leading to locally high supersaturation and enhanced drop growth when this air is subsequently lifted in the updraft. DSD broadening ensues when the DSDs are mixed with those from the cloud core. Decreasing the horizontal and vertical model grid spacings from 100 to 30 m has limited impact on the DSDs. However, when these physical broadening mechanisms (in-cloud activation, collision–coalescence, dilution, etc.) are turned off, there is a reduction of DSD width by up to ~20%–50% when the vertical grid spacing is decreased from 100 to 30 m, consistent with effects of artificial broadening from vertical numerical diffusion. Nonetheless, this artificial numerical broadening appears to be relatively unimportant overall for DSD broadening when physically based broadening mechanisms in the model are included for this cumulus case. 
    more » « less
  2. Abstract

    Bin microphysics schemes are useful tools for cloud simulations and are often considered to provide a benchmark for model intercomparison. However, they may experience issues with numerical diffusion, which are not well quantified, and the transport of hydrometeors depends on the choice of advection scheme, which can also change cloud simulation results. Here, an atmospheric large‐eddy simulation model is adapted to simulate a statistically steady‐state cloud in a convection cloud chamber under well‐constrained conditions. Two bin microphysics schemes, a spectral bin method and the method of moments, as well as several advection methods for the transport of the microphysical variables are employed for model intercomparison. Results show that different combinations of microphysics and advection schemes can lead to considerable differences in simulated cloud properties, such as cloud droplet number concentration. We find that simulations using the advection scheme that suffers more from numerical diffusion tends to have a smaller droplet number concentration and liquid water content, while simulation with the microphysics scheme that suffers more from numerical diffusion tends to have a broader size distribution and thus larger mean droplet sizes. Sensitivities of simulations to bin resolution, spatial resolution, and temporal resolution are also tested. We find that refining the microphysical bin resolution leads to a broader cloud droplet size distribution due to the advection of hydrometeors. Our results provide insight for using different advection and microphysics schemes in cloud chamber simulations, which might also help understand the uncertainties of the schemes used in atmospheric cloud simulations.

     
    more » « less
  3. Abstract

    Current bulk microphysical parameterization schemes underpredict precipitation intensities and drop size distributions (DSDs) during warm rain periods, particularly upwind of coastal terrain. To help address this deficiency, this study introduces a set of modifications, called RCON, to the liquid-phase (warm rain) parameterization currently used in the Thompson–Eidhammer microphysical parameterization scheme. RCON introduces several model modifications, motivated by evaluating simulations from a bin scheme, which together result in more accurate precipitation simulations during periods of warm rain. Among the most significant changes are 1) the use of a wider cloud water DSD of lognormal shape instead of the gamma DSD used by the Thompson–Eidhammer parameterization and 2) enhancement of the cloud-to-rain autoconversion parameterization. Evaluation of RCON is performed for two warm rain events and an extended period during the Olympic Mountains Experiment (OLYMPEX) field campaign of winter 2015/16. We show that RCON modifications produce more realistic precipitation distributions and rain DSDs than the default Thompson–Eidhammer configuration. For the multimonth OLYMPEX period, we show that rain rates, rainwater mixing ratios, and raindrop number concentrations were increased relative to the Thompson–Eidhammer microphysical parameterization, while concurrently decreasing raindrop diameters in liquid-phase clouds. These changes are consistent with an increase in simulated warm rain. Finally, real-time evaluation of the scheme from August 2021 to August 2022 demonstrated improved precipitation prediction over coastal areas of the Pacific Northwest.

    Significance Statement

    Although the accurate simulation of warm rain is critical to forecasting the hydrology of coastal areas and windward slopes, many warm rain parameterizations underpredict precipitation in these locations. This study introduces and evaluates modifications to the Thompson–Eidhammer microphysics parameterization scheme that significantly improve the accuracy of rainfall prediction in those regions.

     
    more » « less
  4. Abstract

    Coarse-gridded atmospheric models often account for subgrid-scale variability by specifying probability distribution functions (PDFs) of process rate inputs such as cloud and rainwater mixing ratios (qcandqr, respectively). PDF parameters can be obtained from numerous sources: in situ observations, ground- or space-based remote sensing, or fine-scale modeling such as large-eddy simulation (LES). LES is appealing to constrain PDFs because it generates large sample sizes, can simulate a variety of cloud regimes/case studies, and is not subject to the ambiguities of observations. However, despite the appeal of using model output for parameterization development, it has not been demonstrated that LES satisfactorily reproduces the observed spatial structure of microphysical fields. In this study, the structure of observed and modeled microphysical fields are compared by applying bifractal analysis, an approach that quantifies variability across spatial scales, to simulations of a drizzling stratocumulus field that span a range of domain sizes, drop concentrations (a proxy for mesoscale organization), and microphysics schemes (bulk and bin). Simulatedqcclosely matches observed estimates of bifractal parameters that measure smoothness and intermittency. There are major discrepancies between observed and simulatedqrproperties, though, with bulk simulatedqrconsistently displaying the bifractal properties of observed clouds (smooth, minimally intermittent) rather than rain while bin simulations produceqrthat is appropriately intermittent but too smooth. These results suggest fundamental limitations of bulk and bin schemes to realistically represent higher-order statistics of the observed rain structure.

     
    more » « less
  5. Abstract

    Recent in situ observations show that haze particles exist in a convection cloud chamber. The microphysics schemes previously used for large‐eddy simulations of the cloud chamber could not fully resolve haze particles and the associated processes, including their activation and deactivation. Specifically, cloud droplet activation was modeled based on Twomey‐type parameterizations, wherein cloud droplets were formed when a critical supersaturation for the available cloud condensation nuclei (CCN) was exceeded and haze particles were not explicitly resolved. Here, we develop and adapt haze‐capable bin and Lagrangian microphysics schemes to properly resolve the activation and deactivation processes. Results are compared with the Twomey‐type CCN‐based bin microphysics scheme in which haze particles are not fully resolved. We find that results from the haze‐capable bin microphysics scheme agree well with those from the Lagrangian microphysics scheme. However, both schemes significantly differ from those from a CCN‐based bin microphysics scheme unless CCN recycling is considered. Haze particles from the recycling of deactivated cloud droplets can strongly enhance cloud droplet number concentration due to a positive feedback in haze‐cloud interactions in the cloud chamber. Haze particle size distributions are more realistic when considering solute and curvature effects that enable representing the complete physics of the activation process. Our study suggests that haze particles and their interactions with cloud droplets may have a strong impact on cloud properties when supersaturation fluctuations are comparable to mean supersaturation, as is the case in the cloud chamber and likely is the case in the atmosphere, especially in polluted conditions.

     
    more » « less