skip to main content

Title: Winter Coastal Divergence as a Predictor for the Minimum Sea Ice Extent in the Laptev Sea

Seasonal predictability of the minimum sea ice extent (SIE) in the Laptev Sea is investigated using winter coastal divergence as a predictor. From February to May, the new ice forming in wind-driven coastal polynyas grows to a thickness approximately equal to the climatological thickness loss due to summer thermodynamic processes. Estimating the area of sea ice that is preconditioned to melt enables seasonal predictability of the minimum SIE. Wintertime ice motion is quantified by seeding passive tracers along the coastlines and advecting them with the Lagrangian Ice Tracking System (LITS) forced with sea ice drifts from the Polar Pathfinder dataset for years 1992–2016. LITS-derived landfast ice estimates are comparable to those of the Russian Arctic and Antarctic Research Institute ice charts. Time series of the minimum SIE and coastal divergence show trends of −24.2% and +31.3% per decade, respectively. Statistically significant correlation ( r = −0.63) between anomalies of coastal divergence and the following September SIE occurs for coastal divergence integrated from February to the beginning of May. Using the coastal divergence anomaly to predict the minimum SIE departure from the trend improves the explained variance by 21% compared to hindcasts based on persistence of the linear trend. Coastal divergence more » anomalies correlate with the winter mean Arctic Oscillation index ( r = 0.69). LITS-derived areas of coastal divergence tend to underestimate the total area covered by thin ice in the CryoSat-2/SMOS (Soil Moisture and Ocean Salinity) thickness dataset, as suggested by a thermodynamic sea ice growth model.

« less
Authors:
 ;  ;  
Publication Date:
NSF-PAR ID:
10083723
Journal Name:
Journal of Climate
Volume:
32
Issue:
4
Page Range or eLocation-ID:
p. 1063-1080
ISSN:
0894-8755
Publisher:
American Meteorological Society
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Compared to the Arctic, seasonal predictions of Antarctic sea ice have received relatively little attention. In this work, we utilize three coupled dynamical prediction systems developed at the Geophysical Fluid Dynamics Laboratory to assess the seasonal prediction skill and predictability of Antarctic sea ice. These systems, based on the FLOR, SPEAR_LO, and SPEAR_MED dynamical models, differ in their coupled model components, initialization techniques, atmospheric resolution, and model biases. Using suites of retrospective initialized seasonal predictions spanning 1992–2018, we investigate the role of these factors in determining Antarctic sea ice prediction skill and examine the mechanisms of regional sea ice predictability. We find that each system is capable of skillfully predicting regional Antarctic sea ice extent (SIE) with skill that exceeds a persistence forecast. Winter SIE is skillfully predicted 11 months in advance in the Weddell, Amundsen and Bellingshausen, Indian, and West Pacific sectors, whereas winter skill is notably lower in the Ross sector. Zonally advected upper ocean heat content anomalies are found to provide the crucial source of prediction skill for the winter sea ice edge position. The recently-developed SPEAR systems are more skillful than FLOR for summer sea ice predictions, owing to improvements in sea ice concentration andmore »sea ice thickness initialization. Summer Weddell SIE is skillfully predicted up to 9 months in advance in SPEAR_MED, due to the persistence and drift of initialized sea ice thickness anomalies from the previous winter. Overall, these results suggest a promising potential for providing operational Antarctic sea ice predictions on seasonal timescales.« less
  2. Sea ice thickness is a key parameter in the polar climate and ecosystem. Thermodynamic and dynamic processes alter the sea ice thickness. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition provided a unique opportunity to study seasonal sea ice thickness changes of the same sea ice. We analyzed 11 large-scale (∼50 km) airborne electromagnetic sea thickness and surface roughness surveys from October 2019 to September 2020. Data from ice mass balance and position buoys provided additional information. We found that thermodynamic growth and decay dominated the seasonal cycle with a total mean sea ice thickness increase of 1.4 m (October 2019 to June 2020) and decay of 1.2 m (June 2020 to September 2020). Ice dynamics and deformation-related processes, such as thin ice formation in leads and subsequent ridging, broadened the ice thickness distribution and contributed 30% to the increase in mean thickness. These processes caused a 1-month delay between maximum thermodynamic sea ice thickness and maximum mean ice thickness. The airborne EM measurements bridged the scales from local floe-scale measurements to Arctic-wide satellite observations and model grid cells. The spatial differences in mean sea ice thickness between the Central Observatory (<10 km) of MOSAiC andmore »the Distributed Network (<50 km) were negligible in fall and only 0.2 m in late winter, but the relative abundance of thin and thick ice varied. One unexpected outcome was the large dynamic thickening in a regime where divergence prevailed on average in the western Nansen Basin in spring. We suggest that the large dynamic thickening was due to the mobile, unconsolidated sea ice pack and periodic, sub-daily motion. We demonstrate that this Lagrangian sea ice thickness data set is well suited for validating the existing redistribution theory in sea ice models. Our comprehensive description of seasonal changes of the sea ice thickness distribution is valuable for interpreting MOSAiC time series across disciplines and can be used as a reference to advance sea ice thickness modeling.« less
  3. Abstract

    The fast decline of Arctic sea ice necessitates a stronger focus on understanding the Arctic sea ice predictability and developing advanced forecast methods for all seasons and for pan-Arctic and regional scales. In this study, the operational forecasting system combining an advanced eddy-permitting ocean–sea ice ensemble reanalysis ORAS5 and state-of-the-art seasonal model-based forecasting system SEAS5 is used to investigate effects of sea ice dynamics and thermodynamics on seasonal (growth-to-melt) Arctic sea ice predictability in 1993–2020. We demonstrate that thermodynamics (growth/melt) dominates the seasonal evolution of mean sea ice thickness at pan-Arctic and regional scales. The thermodynamics also dominates the seasonal predictability of sea ice thickness at pan-Arctic scale; however, at regional scales, the predictability is dominated by dynamics (advection), although the contribution from ice growth/melt remains perceptible. We show competing influences of sea ice dynamics and thermodynamics on the temporal change of ice thickness predictability from 1993–2006 to 2007–20. Over these decades, there was increasing predictability due to growth/melt, attributed to increased winter ocean heat flux in both Eurasian and Amerasian basins, and decreasing predictability due to advection. Our results demonstrate an increasing impact of advection on seasonal sea ice predictability as the region of interest becomes smaller, implyingmore »that correct modeling of sea ice drift is crucial for developing reliable regional sea ice predictions. This study delivers important information about sea ice predictability in the “new Arctic” conditions. It increases awareness regarding sea ice state and implementation of sea ice forecasts for various scientific and practical needs that depend on accurate seasonal sea ice forecasts.

    « less
  4. Abstract This study uses observational and reanalysis datasets in 1980–2016 to show a close connection between a boreal autumn sea ice dipole in the Arctic Pacific sector and sea ice anomalies in the Barents Sea (BS) during the following spring. The September–October Arctic Pacific sea ice dipole variations are highly correlated with the subsequent April–May BS sea ice variations ( r = 0.71). The strong connection between the regional sea ice variabilities across the Arctic uncovers a new source of predictability for spring BS sea ice prediction at 7-month lead time. A cross-validated linear regression prediction model using the Arctic Pacific sea ice dipole with 7-month lead time is demonstrated to have significant prediction skills with 0.54–0.85 anomaly correlation coefficients. The autumn sea ice dipole, manifested as sea ice retreat in the Beaufort and Chukchi Seas and expansion in the East Siberian and Laptev Seas, is primarily forced by preceding atmospheric shortwave anomalies from late spring to early autumn. The spring BS sea ice increases are mostly driven by an ocean-to-sea ice heat flux reduction in preceding months, associated with reduced horizontal ocean heat transport into the BS. The dynamical linkage between the two regional sea ice anomalies is suggestedmore »to involve positive stratospheric polar cap anomalies during autumn and winter, with its center slowly moving toward Greenland. The migration of the stratospheric anomalies is followed in midwinter by a negative North Atlantic Oscillation–like pattern in the troposphere, leading to reduced ocean heat transport into the BS and sea ice extent increase.« less
  5. Abstract Predictability of seasonal sea ice advance in the Chukchi Sea has been investigated in the context of ocean heat transport from the Bering Strait; however, the underlying physical processes have yet to be fully clarified. Using the Pan-Arctic Ice–Ocean Modeling and Assimilation System (PIOMAS) reanalysis product (1979–2016), we examined seasonal predictability of sea ice advance in early winter (November–December) and its source using canonical correlation analysis. It was found that 2-month leading (September–October) surface heat flux and ocean heat advection is the major predictor for interannual variability of sea ice advance. Surface heat flux is related to the atmospheric cooling process, which has influenced sea ice area in the southeastern Chukchi Sea particularly in the 1980s and 1990s. Anomalous surface heat flux is induced by strong northeasterly winds related to the east Pacific/North Pacific teleconnection pattern. Ocean heat advection, which is related to fluctuation of volume transport in the Bering Strait, leads to decrease in the sea ice area in the northwestern Chukchi Sea. Diagnostic analysis revealed that interannual variability of the Bering Strait volume transport is governed by arrested topographic waves (ATWs) forced by southeasterly wind stress along the shelf of the East Siberian Sea. The contribution ofmore »ocean heat flux to sea ice advance has increased since the 2000s; therefore, it is suggested that the major factor influencing interannual variability of sea ice advance in early winter has shifted from atmospheric cooling to ocean heat advection processes. Significance Statement Predictability of sea ice advance in the marginal Arctic seas in early winter is a crucial issue regarding future projections of the midlatitude winter climate and marine ecosystem. This study examined seasonal predictability of sea ice advance in the Chukchi Sea in early winter using a statistical technique and historical model simulation data. We identified that atmospheric cooling and ocean heat transport are the two main predictors of sea ice advance, and that the impact of the latter has become amplified since the 2000s. Our new finding suggests that the precise information on wind-driven ocean currents and temperatures is crucial for the skillful prediction of interannual variability of sea ice advance under present and future climatic regimes.« less