skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Disentangling the effects of drought, salinity, and sulfate on baldcypress growth in a coastal plain restored wetland: Drought and salinity effects on baldcypress
Award ID(s):
1216512
PAR ID:
10084138
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Restoration Ecology
Volume:
24
Issue:
4
ISSN:
1061-2971
Page Range / eLocation ID:
548 to 557
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bubbles entrained by ocean waves rise to the surface and burst, creating a shower of droplets which contribute to sea spray aerosols. Submicron‐sized droplets, of which an estimated 60%–80% come from a bursting bubble film cap, play a key role in global climate atmospheric processes. However, many aspects of predicting the number and size of submicron drops emitted from a bursting bubble remain unknown. It is well‐documented that higher salinity increases submicron droplet production, which has been attributed to the role of salt in the suppression of bubble coalescence. We experimentally show that submicron drop production increases with salinity despite using a salt that does not affect bubble coalescence, indicating that salinity plays a role in the physics of submicron aerosol formation beyond coalescence. Laboratory experiments are conducted using sodium acetate solutions of salinityS = 0.001–0.1 M with millimeter‐sized bubbles generated via a needle. Unlike previous studies, the measured droplet size distributions are converted to formation diameter, revealing that the peak aerosol formation diameter decreases with higher salinity. Applying this diameter conversion to past studies, we find the peak formation diameter exhibits a scaling ofDform ∼ S−0.32across three orders of magnitude in salinity and for a variety of salts, bubble coalescence behaviors, and bubble generation mechanisms. This result suggests that salinity has a systematic effect on the length scale of the rupturing bubble film which generates the aerosols. Consequently, salinity likely impacts the submicron aerosol production in oceanic environments even if bubble coalescence is negligible. 
    more » « less
  2. Wind erosion and dust emissions affect regions of the world with sparse vegetation cover or affected by agricultural practices that expose the soil surface to wind action. Research in this field has investigated the impact of soil moisture, land use, and land cover on soil susceptibility to wind erosion and dust emissions. The effect of soil salinity and sodicity, however, remains poorly appreciated. Salt accumulation in agricultural soils is a major concern in agroecosystems with high evaporative demand, shallow water tables or irrigated with water rich in dissolved solids. The understanding of how salts can affect aeolian processes in arid and hyper-arid landscapes remains incomplete. Recent studies focused on the effect of soil salinity on soil erodibility in dry atmospheric conditions, while the effect of soil sodicity and more humid conditions still needs to be investigated. Here we use wind tunnel tests to detect the effect of varying atmospheric humidity on wind erodibility and particulate matter emissions under saline and sodic conditions.Through a series of controlled wind tunnel experiments of soils treated with different concentrations of saline and sodic water, we find that the threshold velocity for wind erosion significantly increases with increasing soil salinity and sodicity, provided that the soil crust formed by soil salts is not disturbed. Indeed, with increasing soil salinity, the formation of a soil crust of increasing strength is observed, leading to an increase in the threshold wind velocity and a consequent decrease in particulate emissions. However, if the crust is destroyed by trampling, no significant changes in threshold velocity for wind erosion are found with increasing salinity and sodicity levels. Interestingly, after the threshold velocity was exceeded, soil crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions in saline and sodic soils compared to their untreated ('control') counterparts. Finally, understanding the role of atmospheric humidity under changing climate scenarios will help to modulate the wind erosion processes in saline-sodic soils and will help mitigate better dust emissions and soil management policies in arid and semi-arid climate zones. 
    more » « less
  3. Abstract Wind erosion and dust emissions affect regions of the world with sparse vegetation cover or affected by agricultural practices that expose the soil surface to wind action. Although several studies have investigated the impact of soil moisture, land use and land cover on soil susceptibility to wind erosion and dust emissions, the effect of surface soil salinity and sodicity on dust emissions, remains poorly understood. Salt accumulation in agricultural soils is a major concern in agroecosystems with high evaporative demand, shallow water tables or irrigated with water rich in dissolved solids. Recent studies have focused on the effect of soil salinity on soil erodibility in dry atmospheric conditions, while the effect of soil salinity and sodicity in more humid conditions still needs to be investigated. Here we use wind tunnel tests to study the effect of high atmospheric humidity on wind erodibility and particulate matter emissions under saline and sodic conditions. We find that the threshold velocity for wind erosion significantly increases with increasing soil salinity and sodicity, provided that the soil crust formed by soil salts is not disturbed. Indeed, with increasing soil salinity, the formation of a soil crust of increasing strength is observed, leading to an increase in the threshold wind velocity and a consequent decrease in particulate emissions. Interestingly, after the threshold velocity was exceeded, soil crusts were readily ruptured by saltating sand grains resulting in comparable or sometimes even higher particulate matter emissions in saline and sodic soils compared to their untreated (‘control’) counterparts which can be explained by salinity‐induced aggregation and sodicity‐driven clay dispersion effects. Lastly, understanding the role of atmospheric humidity under changing climate scenarios will help to modulate the wind erosion processes in saline‐sodic soils and will help mitigate better dust emissions and soil management policies in arid and semi‐arid climate zones. 
    more » « less