The effects of β‐hydrogen‐containing alkyl Grignard reagents in simple ferric salt cross‐couplings have been elucidated. The reaction of FeCl3with EtMgBr in THF leads to the formation of the cluster species [Fe8Et12]2−, a rare example of a structurally characterized metal complex with bridging ethyl ligands. Analogous reactions in the presence of NMP, a key additive for effective cross‐coupling with simple ferric salts and β‐hydrogen‐containing alkyl nucleophiles, result in the formation of [FeEt3]−. Reactivity studies demonstrate the effectiveness of [FeEt3]−in rapidly and selectively forming the cross‐coupled product upon reaction with electrophiles. The identification of iron‐ate species with EtMgBr analogous to those previously observed with MeMgBr is a critical insight, indicating that analogous iron species can be operative in catalysis for these two classes of alkyl nucleophiles.
The effects of β‐hydrogen‐containing alkyl Grignard reagents in simple ferric salt cross‐couplings have been elucidated. The reaction of FeCl3with EtMgBr in THF leads to the formation of the cluster species [Fe8Et12]2−, a rare example of a structurally characterized metal complex with bridging ethyl ligands. Analogous reactions in the presence of NMP, a key additive for effective cross‐coupling with simple ferric salts and β‐hydrogen‐containing alkyl nucleophiles, result in the formation of [FeEt3]−. Reactivity studies demonstrate the effectiveness of [FeEt3]−in rapidly and selectively forming the cross‐coupled product upon reaction with electrophiles. The identification of iron‐ate species with EtMgBr analogous to those previously observed with MeMgBr is a critical insight, indicating that analogous iron species can be operative in catalysis for these two classes of alkyl nucleophiles.
more » « less- NSF-PAR ID:
- 10084349
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 131
- Issue:
- 9
- ISSN:
- 0044-8249
- Page Range / eLocation ID:
- p. 2795-2799
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The use of
N ‐methylpyrrolidone (NMP) as a co‐solvent in ferric salt catalyzed cross‐coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross‐coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6][FeMe3]2(1 ), which forms as the major iron species in situ in reactions of Fe(acac)3and MeMgBr under catalytically relevant conditions where NMP is employed as a co‐solvent. Importantly, combined GC analysis and57Fe Mössbauer spectroscopic studies identified1 as a highly reactive iron species for the selective formation generating cross‐coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of1 over [Fe8Me12]−cluster generation, which occurs in the absence of NMP. -
Abstract The use of
N ‐methylpyrrolidone (NMP) as a co‐solvent in ferric salt catalyzed cross‐coupling reactions is crucial for achieving the highly selective, preparative scale formation of cross‐coupled product in reactions utilizing alkyl Grignard reagents. Despite the critical importance of NMP, the molecular level effect of NMP on in situ formed and reactive iron species that enables effective catalysis remains undefined. Herein, we report the isolation and characterization of a novel trimethyliron(II) ferrate species, [Mg(NMP)6][FeMe3]2(1 ), which forms as the major iron species in situ in reactions of Fe(acac)3and MeMgBr under catalytically relevant conditions where NMP is employed as a co‐solvent. Importantly, combined GC analysis and57Fe Mössbauer spectroscopic studies identified1 as a highly reactive iron species for the selective formation generating cross‐coupled product. These studies demonstrate that NMP does not directly interact with iron as a ligand in catalysis but, alternatively, interacts with the magnesium cations to preferentially stabilize the formation of1 over [Fe8Me12]−cluster generation, which occurs in the absence of NMP. -
Abstract The reaction of nitroxyl radicals TEMPO (2,2′,6,6′‐tetramethylpiperidinyloxyl) and AZADO (2‐azaadamantane‐N‐oxyl) with an iron(I) synthon affords iron(II)‐nitroxido complexes (ArL)Fe(κ1‐TEMPO) and (ArL)Fe(κ2‐N,O‐AZADO) (ArL=1,9‐(2,4,6‐Ph3C6H2)2‐5‐mesityldipyrromethene). Both high‐spin iron(II)‐nitroxido species are stable in the absence of weak C−H bonds, but decay via N−O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4‐cyclohexadiene. Whereas (ArL)Fe(κ1‐TEMPO) reacts to give a diferrous hydroxide [(ArL)Fe]2(μ‐OH)2, the reaction of four‐coordinate (ArL)Fe(κ2‐N,O‐AZADO) with hydrogen atom donors yields ferric hydroxide (ArL)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C−H substrate and are consistent with rate‐determining hydrogen atom transfer.
-
Abstract The reaction of nitroxyl radicals TEMPO (2,2′,6,6′‐tetramethylpiperidinyloxyl) and AZADO (2‐azaadamantane‐N‐oxyl) with an iron(I) synthon affords iron(II)‐nitroxido complexes (ArL)Fe(κ1‐TEMPO) and (ArL)Fe(κ2‐N,O‐AZADO) (ArL=1,9‐(2,4,6‐Ph3C6H2)2‐5‐mesityldipyrromethene). Both high‐spin iron(II)‐nitroxido species are stable in the absence of weak C−H bonds, but decay via N−O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4‐cyclohexadiene. Whereas (ArL)Fe(κ1‐TEMPO) reacts to give a diferrous hydroxide [(ArL)Fe]2(μ‐OH)2, the reaction of four‐coordinate (ArL)Fe(κ2‐N,O‐AZADO) with hydrogen atom donors yields ferric hydroxide (ArL)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C−H substrate and are consistent with rate‐determining hydrogen atom transfer.