skip to main content


Title: Thermodynamic and Dynamic Mechanisms for Hydrological Cycle Intensification over the Full Probability Distribution of Precipitation Events

Precipitation changes in a warming climate have been examined with a focus on either mean precipitation or precipitation extremes, but changes in the full probability distribution of precipitation have not been well studied. This paper develops a methodology for the quantile-conditional column moisture budget of the atmosphere for the full probability distribution of precipitation. Analysis is performed on idealized aquaplanet model simulations under 3-K uniform SST warming across different horizontal resolutions. Because the covariance of specific humidity and horizontal mass convergence is much reduced when conditioned onto a given precipitation percentile range, their conditional averages yield a clear separation between the moisture (thermodynamic) and circulation (dynamic) effects of vertical moisture transport on precipitation. The thermodynamic response to idealized climate warming can be understood as a generalized “wet get wetter” mechanism, in which the heaviest precipitation of the probability distribution is enhanced most from increased gross moisture stratification, at a rate controlled by the change in lower-tropospheric moisture rather than column moisture. The dynamic effect, in contrast, can be interpreted by shifts in large-scale atmospheric circulations such as the Hadley cell circulation or midlatitude storm tracks. Furthermore, horizontal moisture advection, albeit of secondary role, is important for regional precipitation change. Although similar mechanisms are at play for changes in both mean precipitation and precipitation extremes, the thermodynamic contributions of moisture transport to increases in high percentiles of precipitation tend to be more widespread across a wide range of latitudes than increases in the mean, especially in the subtropics.

 
more » « less
NSF-PAR ID:
10084550
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of the Atmospheric Sciences
Volume:
76
Issue:
2
ISSN:
0022-4928
Page Range / eLocation ID:
p. 497-516
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The response of zonal-mean precipitation minus evaporation ( P − E ) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean P − E change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM P − E change and better emulates GCM P − E change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in P − E change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean P − E change. The ability of the MEBM to emulate GCM P − E change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase P − E in the deep tropics, decrease P − E in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM P − E change under warming. Significance Statement Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes. 
    more » « less
  2. The moisture budget is evaluated as a function of the probability distribution of precipitation for the end of the twentieth century and projected end of the twenty-first century in the Community Earth System Model Large Ensemble. For a given precipitation percentile, a conditional moisture budget equation relates precipitation minus evaporation ( P − E) to vertical moisture transport, horizontal moisture advection, and moisture storage. At high percentiles, moisture advection and moisture storage cancel and evaporation is negligible, so that precipitation is approximately equal to vertical moisture transport, and likewise for projected changes. Therefore, projected changes to extreme precipitation are approximately equal to the sum of thermodynamic and dynamic tendencies, representing changes to the vertical profiles of moisture content and mass convergence, respectively. The thermodynamic tendency is uniform across percentiles and regions as an intensification of the hydrological cycle, but the dynamic tendency is more complex. For extreme events, per degree of warming, in the mid-to-high latitudes the dynamic tendency is small, so that precipitation approximately scales by the Clausius–Clapeyron 7% K−1increase. In the subtropics, a drying tendency originating from dynamics offsets the thermodynamic wetting tendency, with the net effect on precipitation varying among regions. The effect of this dynamic drying decreases with increasing percentile. In the deep tropics, a positive dynamic tendency occurs with magnitude similar to or greater than the positive thermodynamic tendency, resulting in generally a 10%–15% K−1precipitation increase, and with a >25% K−1increase over the tropical east Pacific. This reinforcing dynamical tendency increases rapidly for high percentiles.

     
    more » « less
  3. Tropical precipitation extremes are expected to strengthen with warming, but quantitative estimates remain uncertain because of a poor understanding of changes in convective dynamics. This uncertainty is addressed here by analyzing idealized convection-permitting simulations of radiative–convective equilibrium in long-channel geometry. Across a wide range of climates, the thermodynamic contribution to changes in instantaneous precipitation extremes follows near-surface moisture, and the dynamic contribution is positive and small but is sensitive to domain size. The shapes of mass flux profiles associated with precipitation extremes are determined by conditional sampling that favors strong vertical motion at levels where the vertical saturation specific humidity gradient is large, and mass flux profiles collapse to a common shape across climates when plotted in a moisture-based vertical coordinate. The collapse, robust to changes in microphysics and turbulence schemes, implies a thermodynamic contribution that scales with near-surface moisture despite substantial convergence aloft and allows the dynamic contribution to be defined by the pressure velocity at a single level. Linking the simplified dynamic mode to vertical velocities from entraining plume models reveals that the small dynamic mode in channel simulations ([Formula: see text]2% K−1) is caused by opposing height dependences of vertical velocity and density, together with the buffering influence of cloud-base buoyancies that vary little with surface temperature. These results reinforce an emerging picture of the response of extreme tropical precipitation rates to warming: a thermodynamic mode of about 7% K−1dominates, with a minor contribution from changes in dynamics.

     
    more » « less
  4. Abstract

    Global warming is expected to cause significant changes in the pattern of precipitation minus evaporation (PE), which represents the net flux of water from the atmosphere to the surface or, equivalently, the convergence of moisture transport within the atmosphere. In most global climate model simulations, the pattern ofPEchange resembles an amplification of the historical pattern—a tendency known as “wet gets wetter, dry gets drier.” However, models also predict significant departures from this approximation that are not well understood. Here, we introduce a new method of decomposing the pattern ofPEchange into contributions from various dynamic and thermodynamic mechanisms and use it to investigate the response ofPEto global warming within the CESM1 Large Ensemble. In contrast to previous decompositions ofPEchange, ours incorporates changes not only in the monthly means of atmospheric winds and moisture, but also in their temporal variability, allowing us to isolate the hydrologic impacts of changes in the mean circulation, transient eddies, relative humidity, and the spatial and temporal distributions of temperature. In general, we find that changes in the mean circulation primarily control thePEresponse in the tropics, while temperature changes dominate at higher latitudes. Although the relative importance of specific mechanisms varies by region, at the global scale departures from the wet-gets-wetter approximation over land are primarily due to changes in the temperature lapse rate, while changes in the mean circulation, relative humidity, and horizontal temperature gradients play a secondary role.

     
    more » « less
  5. null (Ed.)
    Abstract Atmospheric rivers (ARs), narrow intense moisture transport, account for much of the poleward moisture transport in midlatitudes. While studies have characterized AR features and the associated hydrological impacts in a warming climate in observations and comprehensive climate models, the fundamental dynamics for changes in AR statistics (e.g., frequency, length, width) are not well understood. Here we investigate AR response to global warming with a combination of idealized and comprehensive climate models. To that end, we developed an idealized atmospheric GCM with Earth-like global circulation and hydrological cycle, in which water vapor and clouds are modeled as passive tracers with simple cloud microphysics and precipitation processes. Despite the simplicity of model physics, it reasonably reproduces observed dynamical structures for individual ARs, statistical characteristics of ARs, and spatial distributions of AR climatology. Under climate warming, the idealized model produces robust AR changes similar to CESM large ensemble simulations under RCP8.5, including AR size expansion, intensified landfall moisture transport, and an increased AR frequency, corroborating previously reported AR changes under global warming by climate models. In addition, the latitude of AR frequency maximum shifts poleward with climate warming. Further analysis suggests the thermodynamic effect (i.e., an increase in water vapor) dominates the AR statistics and frequency changes while both the dynamic and thermodynamic effects contribute to the AR poleward shift. These results demonstrate that AR changes in a warming climate can be understood as passive water vapor and cloud tracers regulated by large-scale atmospheric circulation, whereas convection and latent heat feedback are of secondary importance. 
    more » « less