skip to main content


Title: Impacts of the Northwest Forest Plan on forest composition and bird populations

The Northwest Forest Plan (NWFP) initiated one of the most sweeping changes to forest management in the world, affecting 10 million hectares of federal land. The NWFP is a science-based plan incorporating monitoring and adaptive management and provides a unique opportunity to evaluate the influence of policy. We used >25 years of region-wide bird surveys, forest data, and land-ownership maps to test this policy’s effect on biodiversity. Clearcutting decreased rapidly, and we expected populations of older-forest–associated birds to stabilize on federal land, but to continue declining on private industrial lands where clearcutting continued. In contrast, we expected declines in early-seral–associated species on federal land because of reduced anthropogenic disturbance since the NWFP. Bayesian hierarchical models revealed that bird species’ population trends tracked changes in forest composition. However, against our expectations, declines of birds associated with older forests accelerated. These declines are partly explained by losses of older forests due to fire on federal land and continued clearcutting elsewhere. Indeed, the NWFP anticipated that reversing declines of older forests would take time. Overall, the early-seral ecosystem area was stable, but declined in two ecoregions—the Coast Range and Cascades—along with early-seral bird populations. Although the NWFP halted clearcutting on federal land, this has so far been insufficient to reverse declines in older-forest–associated bird populations. These findings underscore the importance of continuing to prioritize older forests under the NWFP and ensuring that the recently proposed creation of early-seral ecosystems does not impede the conservation and development of older-forest structure.

 
more » « less
NSF-PAR ID:
10084953
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. 201813072
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite widespread concerns about the anthropogenic drivers of global pollinator declines, little information is available about the impacts of land management practices on wild bees outside of agricultural systems, including in forests managed intensively for wood production. We assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas‐fir (Pseudotsuga menziesii) stands across a gradient in stand ages spanning a typical harvest rotation. We measured bee abundance, species richness, and alpha and beta diversity, as well as habitat characteristics (i.e., floral resources, nesting substrates, understory vegetation, and early seral forest in the surrounding landscape) during the spring and summer of 2018 and 2019. We found that bee abundance and species richness declined rapidly with stand age, decreasing by 61% and 48%, respectively, for every 5 years since timber harvest. Asymptotic estimates of Shannon and Simpson diversity were highest in stands 6–10 years post‐harvest and lowest after the forest canopy had closed, ~11 years post‐harvest. Bee communities in older stands were nested subsets of bee communities found in younger stands, indicating that changes were due to species loss rather than turnover as the stands aged. Bee abundance—but not species richness—was positively associated with floral resource density, and neither metric was associated with floral richness. The amount of early seral forest in the surrounding landscape seemed to enhance bee species richness in older, closed‐canopy stands, but otherwise had little effect. Changes in the relative abundance of bee species did not relate to bee functional characteristics such as sociality, diet breadth, or nesting substrate. Our study demonstrates that Douglas‐fir plantations develop diverse communities of wild bees shortly after harvest, but those communities erode rapidly over time as forest canopies close. Therefore, stand‐scale management activities that prolong the precanopy closure period and enhance floral resources during the initial stage of stand regeneration will provide the greatest opportunity to enhance bee diversity in landscapes dominated by intensively managed conifer forests.

     
    more » « less
  2. Abstract

    Long‐term watershed experiments provide the opportunity to understand forest hydrology responses to past logging, road construction, forest regrowth, and their interactions with climate and geomorphic processes such as road‐related landslides. We examined a 50‐year record from paired‐watershed experiments in the H. J. Andrews Experimental Forest, Oregon, USA in which 125 to 450‐year‐old conifer forests were harvested in the 1960s and 1970s and converted to planted conifer forests. We evaluated how quickflow and delayed flow for 1222 events in treated and reference watersheds changed by season after clearcutting and road construction, including 50 years of growth of planted forest, major floods, and multi‐decade reductions in snowpack. Quickflow runoff early in the water year (fall) increased by up to +99% in the first decade, declining to below pre‐harvest levels (−1% to −15%) by the third to fifth decade after clearcutting. Fall delayed flow responded more dramatically than quickflow and fell below pre‐treatment levels in all watersheds by the fifth decade, consistent with increased transpiration in the planted forests. Quickflow increased less (+12% to 70%) during the winter and spring but remained higher than pre‐treatment levels throughout the fourth or fifth decade, potentially impacted by post‐harvest burning, roads, and landslides. Quickflow remained high throughout the 50‐year period of study, and much higher than delayed flow in the last two decades in a watershed in which road‐related changes in flow routing and debris flows after the flood of record increased network connectivity. A long‐term decline in regional snowpack was not clearly associated with responses of treated vs. reference watersheds. Hydrologic processes altered by harvest of old‐growth conifer forest more than 50 years ago (transpiration, interception, snowmelt, and flow routing) continued to modify streamflow, with no clear evidence of hydrologic recovery. These findings underscore the importance of continued long‐term watershed experiments.

     
    more » « less
  3. Abstract

    Few long‐term studies have explored how intensively managed short rotation forest plantations interact with climate variability. We examine how prolonged severe drought and forest operations affect runoff in 11 experimental catchments on private corporate forest land near Nacimiento in south central Chile over the period 2008–2019. The catchments (7.7–414 ha) contain forest plantations of exotic fast‐growing species (Pinus radiata,Eucalyptus spp.) at various stages of growth in a Mediterranean climate (mean long‐term annual rainfall = 1381 mm). Since 2010, a drought, unprecedented in recent history, has reduced rainfall at Nacimiento by 20%, relative to the long‐term mean. Pre‐drought runoff ratios were <0.2 under 8‐year‐old Eucalyptus; >0.4 under 21‐year‐old Radiata pine and >0.8 where herbicide treatments had controlled vegetation for 2 years in 38% of the catchment area. Early in the study period, clearcutting of Radiata pine (85%–95% of catchment area) increased streamflow by 150 mm as compared with the year before harvest, while clearcutting and partial cuts of Eucalyptus did not increase streamflow. During 2008–2019, the combination of emerging drought and forestry treatments (replanting with Eucalyptus after clearcutting of Radiata pine and Eucalyptus) reduced streamflow by 400–500 mm, and regeneration of previously herbicide‐treated vegetation combined with growth of Eucalyptus plantations reduced streamflow by 1125 mm (87% of mean annual precipitation 2010–2019). These results from one of the most comprehensive forest catchment studies in the world on private industrial forest land indicate that multiple decades of forest management have reduced deep soil moisture reservoirs. This effect has been exacerbated by drought and conversion from Radiata pine to Eucalyptus, apparently largely eliminating subsurface supply to streamflow. The findings reveal tradeoffs between wood production and water supply, provide lessons for adapting forest management to the projected future drier climate in Chile, and underscore the need for continued experimental work in managed forest plantations.

     
    more » « less
  4. Abstract

    As demand for wood products increases in step with global population growth, balancing the potentially competing values of biodiversity conservation, carbon storage and timber production is a major challenge. Land sparing involves conserving forest while growing timber in intensively managed areas. On the other hand, land sharing utilizes ecological forestry approaches, but with a larger management footprint due to lower yields. While the sparing‐sharing framework has been widely tested and debated in agricultural settings to balance competing values, such land‐allocation strategies have been rarely studied in forestry.

    We examined whether a sparing, sharing or Triad strategy best achieves multiple forest objectives simultaneously. In Triad, management units (stands) in forest landscapes are allocated to one of three treatments: reserve (where conservation is the sole objective), intensive (timber production is the sole objective) and ecological (both objectives are combined). To our knowledge, ours is the first Triad study from the temperate zone to quantify direct measures of biodiversity (e.g. species' abundance).

    Using a commonly utilized forest planning tool parameterized with empirical data, we modelled the capacity of a temperate rainforest to provide multiple ecosystem services (biodiversity, carbon storage, timber production and old‐growth forest structure) over 125 years based on 43 different allocation scenarios. We then quantified trade‐offs between scenarios, taking into account the landscape structure, and determined which strategies most consistently balanced ecosystem services.

    Sparing strategies were best when the services provided by both old‐growth and early seral (young) forests were prioritized, but at a cost to species associated with mid‐seral stages, which benefitted most from Triad and sharing strategies. Therefore, sparing provides the greatest net benefit, particularly given that old‐growth‐associated species and ecosystem services are currently of the greatest conservation concern.

    Synthesis and applications. We found that maximizing multiple elements of biodiversity and ecosystem services simultaneously with a single management strategy was elusive. The strategy that maximized each service and species varied greatly by both the service and the level of timber production. Fortunately, a diversity of management options can produce the same wood supply, providing ample decision space for establishing priorities and evaluating trade‐offs.

     
    more » « less
  5. Abstract

    Climate change is driving substantial changes in North American boreal forests, including changes in productivity, mortality, recruitment, and biomass. Despite the importance for carbon budgets and informing management decisions, there is a lack of near‐term (5–30 year) forecasts of expected changes in aboveground biomass (AGB). In this study, we forecast AGB changes across the North American boreal forest using machine learning, repeat measurements from 25,000 forest inventory sites, and gridded geospatial datasets. We find that AGB change can be predicted up to 30 years into the future, and that training on sites across the entire domain allows accurate predictions even in regions with only a small amount of existing field data. While predicting AGB loss is less skillful than gains, using a multi‐model ensemble can improve the accuracy in detecting change direction to >90% for observed increases, and up to 70% for observed losses. Higher stem density, winter temperatures, and the presence of temperate tree species in forest plots were positively associated with AGB change, whereas greater initial biomass, continentality (difference between mean summer and winter temperatures), prevalence of black spruce (Picea mariana), summer precipitation, and early warning metrics from long‐term remote sensing time series were negatively associated with AGB change. Across the domain, we predict nondisturbance‐induced declines in AGB at 23% of sites by 2030. The approach developed here can be used to estimate near‐future forest biomass in boreal North America and inform relevant management decisions. Our study also highlights the power of machine learning multi‐model ensembles when trained on a large volume of forest inventory plots, which could be applied to other regions with adequate plot density and spatial coverage.

     
    more » « less