In the limit of a large yield stress, or equivalently at the initiation of motion, viscoplastic flows can develop narrow boundary layers that provide either surfaces of failure between rigid plugs, the lubrication between a plugged flow and a wall or buffers for regions of predominantly plastic deformation. Oldroyd ( Proc. Camb. Phil. Soc. , vol. 43, 1947, pp. 383–395) presented the first theoretical discussion of these viscoplastic boundary layers, offering an asymptotic reduction of the governing equations and a discussion of some model flow problems. However, the complicated nonlinear form of Oldroyd’s boundary-layer equations has evidently precluded further discussion of them. In the current paper, we revisit Oldroyd’s viscoplastic boundary-layer analysis and his canonical examples of a jet-like intrusion and flow past a thin plate. We also consider flow down channels with either sudden expansions or wavy walls. In all these examples, we verify that viscoplastic boundary layers form as envisioned by Oldroyd. For each example, we extract the dependence of the boundary-layer thickness and flow profiles on the dimensionless yield-stress parameter (Bingham number). We find that, while Oldroyd’s boundary-layer theory applies to free viscoplastic shear layers, it does not apply when the boundary layer is adjacent to a wall, as has been observed previously for two-dimensional flow around circular obstructions. Instead, the boundary-layer thickness scales in a different fashion with the Bingham number, as suggested by classical solutions for plane-parallel flows, lubrication theory and, for flow around a plate, by Piau ( J. Non-Newtonian Fluid Mech. , vol. 102, 2002, pp. 193–218); we rationalize this second scaling and provide an alternative boundary-layer theory.
more »
« less
Wind Limits on Rain Layers and Diurnal Warm Layers
- PAR ID:
- 10085326
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 124
- Issue:
- 2
- ISSN:
- 2169-9275
- Page Range / eLocation ID:
- p. 897-924
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Concurrent abstraction layers are ubiquitous in modern computer systems because of the pervasiveness of multithreaded programming and multicore hardware. Abstraction layers are used to hide the implementation details (e.g., fine-grained synchronization) and reduce the complex dependencies among components at different levels of abstraction. Despite their obvious importance, concurrent abstraction layers have not been treated formally. This severely limits the applicability of layer-based techniques and makes it difficult to scale verification across multiple concurrent layers. In this paper, we present CCAL---a fully mechanized programming toolkit developed under the CertiKOS project---for specifying, composing, compiling, and linking certified concurrent abstraction layers. CCAL consists of three technical novelties: a new game-theoretical, strategy-based compositional semantic model for concurrency (and its associated program verifiers), a set of formal linking theorems for composing multithreaded and multicore concurrent layers, and a new CompCertX compiler that supports certified thread-safe compilation and linking. The CCAL toolkit is implemented in Coq and supports layered concurrent programming in both C and assembly. It has been successfully applied to build a fully certified concurrent OS kernel with fine-grained locking.more » « less